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9-1 The Conditions for Equilibrium

An object with forces acting on 1t, but that 1s not
moving, 1s said to be in equilibrium.

The First Condition for Equilibrium
2F, =0, 2F, =0, 2F, = 0.

Normal force

YF =
Fy — mg=0 Grawty

Fy =mg

=




EXAMPLE 9-1

Straightening teeth. The wire band shown in Fig.
9—-3a has a tension of 2.0 N along it. It therefore

exerts forces of 2.0 N on the highlighted tooth (to
which it is attached) in the two directions shown.
Calculate the resultant force on the tooth due to

the wire, FR .

Solution:

APPROACH Since the two forces Fy are equal, their sum will be directed along
the line that bisects the angle between them, which we have chosen to be the
y axis. The x components of the two forces add up to zero.

Fr=20N,Fy =7
Fg, = F;sin(70°) - F; sin(70°) =0
Fgy = Fr €0s(70°) + Fy cos(70°)
=2F c0s(70°) =1.36=1.4 N




EXAMPLE 9-2

Chandelier cord tension. Calculate the tensions and in
the two cords that are connected to the vertical cord
supporting the 200-kg chandelier in Fig. 9—4. Ignore the
mass of the cords

Solution:
mg = (200kg)(9.80 m/s*) = 1960 N.

SF, = 0

F,sin60° — (200 kg)(g) = 0

(200kg)g Fay AFx, Y

F, = = (231kg)g = (231ke)(9.80m/s’) = 2260N. o

v e - (Blkgg = (Blkg)(O80m/) oN |
(b) Fax

In the horizontal direction, with 2F, = 0,

2F, = Ky — Fycos60° = 0.
Thus
Fy = Fycos60° = (231kg)(g)(0.500) = (115kg)g = 1130N.



Although the net force on it is zero, the ruler will move (rotate). A pair of
equal forces acting in opposite directions but at different points on an
object (as shown here) is referred to as a couple.



The Second Condition for Equilibrium

The second condition of equilibrium 1s that there be no
torque around any axis; the choice of axis 1s arbitrary.

217 = 0.



EXAMPLE 9-3

A lever. The bar in Fig. 9-6 is being used as a lever to
pry up a large rock. The small rock acts as a fulcrum
(pivot point). The force required at the long end of the
bar can be quite a bit smaller than the rock’s weight

mg, since it is the torques that balance in the rotation e

about the fulcrum. If, however, the leverage isn’t
sufficient, and the large rock isn’t budged, what are two mg
ways to increase the lever arm?

Solution:

In order to pry the rock, the torque due to Fp must at least balance the torque

due to mg; that is

mgr = Fp R and
ro_ Fe

R mg

With r smaller, the weight mg can be balanced with less force £.



Static Equilibrium

Equilibrium and static
equilibrium
Static equilibrium conditions

— Net external force must equal
Zero

— Net external torque must equal
Zero

Center of gravity

Solving static equilibrium
problems




Conditions for Equilibrium

* The net force equals zero Z F=0

* The net torque equals zero Z = _ |
T =

* These conditions describe the rigid objects 1n the
equilibrium analysis model



9-2 Solving Statics Problems

1. Choose one object at a time, and make a free-body
diagram showing all the forces on 1t and where they act.

2. Choose a coordinate system and resolve forces into
components.

3. Write equilibrium equations for the forces.

4. Choose any axis perpendicular to the plane of the forces
and write the torque equilibrium equation. A clever choice
here can simplify the problem enormously.

5. Solve.



EXAMPLE 9-4

Balancing a seesaw. A board of mass M = 4.0 kg serves as a seesaw for
two children, as shown in Fig. 9—7a. Child A has a mass of 30 kg and sits
2.5 m from the pivot point, P (his center of gravity is 2.5 m from the pivot).
At what distance x from the pivot must child B, of mass 25 kg, place
herself to balance the seesaw? Assume the board is uniform and centered
over the pivot.

Solution: = E "
Al | 4 B
2F, = 0 +T0rque< 3/ 22m = - : )—Torque
Fn —mpyg — mgg — Mg = 0, N
where Fy, = m,g and Fy = mgg. [ﬁN
Sr = 0 | | 25 m X

|
P‘Mg = (4.0 kg)g B —m ‘;J
— "B

mpag(25m) — mggx + Mg(Om) + Fy(Om) = 0 "FA—mAfg

mpg(25m) — mggx = 0,

_ Ma _ 30kg _
x = . (2.5m) = 25 ke (25m) = 3.0m.

To balance the seesaw, child B must sit so that her CG is 3.0 m from
the pivot point.



EXAMPLE 9-5 %
.

Forces on a beam and supports. A uniform 1500-kg F, ) Fg
beam, 20.0 m long, supports a 15,000-kg printing press 4 o=1u" %
5.0 m from the right support column (Fig. 9-8). Calculate [P CG| e |
the force on each of the vertical support columns. ] ; i
(1500 kg)g
SO|UtI0n 10.0 m——«5.0 m<|~5.0 m
We choose a convenient axis for writing the torque equation: the (15,000 kg)g

point of application of F, (labeled P), so F, will not enter the
equation(its lever arm will be zero).

S7 =0, 3= -(100m)(150ke)g - (150m)(15000ke)g + (200m)Fy = 0.
Fy = (12,000kg)g = 118,000N.

2F, = 0, with +y upward:
LFy = Fy = (1500kg)g = (15000 kg)g + F = 0.
Fy = (4500kg)g = 44,100 N.



EXAMPLE 9-7

Ladder. A 5.0-m-long ladder leans against a wall at a point 4.0 L FL_
m above a cement floor as shown. The ladder is uniform and x
has mass m = 12.0 kg. Assuming the wall is frictionless, but
the floor is not, determine the forces exerted on the ladder by
the floor and by the wall.

Solution:

| X0 1

APPROACH Figure 9-11 is the free-body diagram for the ladder, showing all
the forces acting on the ladder. The wall, since 1t 1s frictionless, can exert a force
only perpendicular to the wall, and we label that force Fy,. The cement floor
exerts a force F which has both horizontal and vertical force components:
Fey 1s frictional and F is the normal force. Finally, gravity exerts a force
mg = (120kg)(9 80 m/s ) = 118 N on the ladder at its midpoint, since the
ladder 1s uniform.

mg = (12.0kg)(9.80 m/s?) = 118N

uFy = Foy—mg =, Fey = mg = 118N,



EXAMPLE 9-7

v, = VE0mf - (40m)P=30m

The lever arm for mg is half this, or 1.5 m, and the
lever arm for F, is 4.0 m

The torque equation about the ladder’s contact point on the
cement is

27 = 40m)Fy — (1.5 m)mg = 0. |

[ Xp \

(1.5 m)(12.0kg)(9.8 m/s?)

Fy = = 44N,
v 40m

ZFX — FCI_FW — 0

Foy = Fy = 44N

Since the components of F.are F., = 44N and Fcy = 118N, then
Fo = \/(44 N)* + (118 N)* = 126N =~ 130N

(rounded off to two significant figures), and it acts at an angle to the floor of
0 = tan (118 N/44N) = 70°.




EXAMPLE 9-8

Force exerted by biceps muscle. How much force must the biceps muscle exert
when a 5.0-kg ball is held in the hand (a) with the arm horizontal as in Fig. 9-13a,
and (b) when the arm is at a 45° angle as in Fig. 9—-13b? The biceps muscle is
connected to the forearm by a tendon attached 5.0 cm from the elbow joint. Assume
that the mass of forearm and hand together is 2.0 kg and their CG is as shown.

(b)




EXAMPLE 9-8

(b)

SOLUTION (a) We calculate torques about the point where F; acts in Fig. 9-13a.
The X7 = 0 equation gives

(0.050 m)Fy, — (0.15m)(2.0kg)g — (0.35m)(5.0kg)g = O.

We solve for Fy;:

~ (0.15m)(2.0kg)g + (0.35m)(5.0kg)g
Mo 0.050 m

= (41kg)g = 400N.

(b) The lever arm, as calculated about the joint, is reduced by the factor cos 45°
for all three forces. Our torque equation will look like the one just above, except
that each term will have its lever arm reduced by the same factor, which will
cancel out. The same result is obtained, F,; = 400 N.



9-3 Applications to Muscles and Joints

The angle at which this man’s back 1s bent places an
enormous force on the disks at the base of his spine, as
the lever arm for Fy, 1s so small.

Erector spinae

Fifth muscles
lumbar / -
ey )
vertebra : Y -
pY 4 | _Z30°
= 18l _=2"
20 ////jg;/
5
Lever arm — 4.2~ S
for By o
i
Axis for X1

calculation

(c)

(a)

wy = 0.07w ‘
(head) X

’I,UA = O. 1 27,0
(2 arms) ;
w = Total weight
’IUT = 046w of person
(trunk)

(b)



EXAMPLE 9-9 | Forces on your back. Calculate the magnitude and direc-

tion of the force Fy, acting on the fifth lumbar vertebra as represented in Fig. 9-14b.

APPROACH We use the model of the upper body described above and shown
in Fig. 9—14b. We can calculate F,, using the torque equation if we take the axis
at the base of the spine (point S); with this choice, the other unknown, F,,, doesn’t
appear in the equation because its lever arm is zero. To figure the lever arms, we
need to use trigonometric functions.

SOLUTION For F,,, the lever arm (perpendicular distance from axis to line of
action of the force) will be the real distance to where the force acts (48 cm) mul-
tiplied by sin 12°, as shown in Fig. 9-14c. The lever arms for wy, w, , and Wy
can be seen from Fig. 9—14b to be their respective distances from S times sin 60°.
F\; tends to rotate the trunk counterclockwise, which we take to be positive.
Then wy;, w, , wp will contribute negative torques. Thus 27 = 0 gives

(0.48 m)(sin 12°)(Fy) — (0.72 m)(sin 60°)(wy)
— (0.48 m)(sin 60°)(w,) — (0.36 m)(sin 60°)(wy) = O.
Solving for F; and putting in the values for wyy ., w, , w given in Fig. 9-14b, we find
7 = (0.72 m)(0.07w) + (0.48 m)(0.12w) + (0.36 m)(0.46w)
Mo (0.48 m)(sin 12°)
= 237w = 2.4w,

where w is the total weight of the body. To get the components of Fy, we use
the x and y components of the force equation (noting that 30° — 12° = 18°):

(sin 60°)

2F, = Fyy — Fysinl8® — wy — wa — wr = 0
SO

Fyy = 138w = 1l.4w,
and

2F, = Fy — Fycosl1l8 = 0
SO

F,y = 225w = 23w,

where we keep 3 significant figures for calculating, but round off to 2 for giving
the answer. Then

Fy = VF3, + FYy, = 2.6w.

The angle 6 that F\, makes with the horizontal is given by tan 6 = Fy,,/Fy, = 0.61,
so 6 = 32°.



9-4 Stability and Balance

If the forces on an object are such that they tend to return
it to 1ts equilibrium position, it 1s said to be in stable
equilibrium.




9-4 Stability and Balance

If, however, the forces tend to move 1t away from its
equilibrium point, 1t 1s said to be 1n unstable equilibrium.

]

—

(b)



9-4 Stability and Balance

An object 1n stable equilibrium may become unstable 1f
it 1s tipped so that 1ts center of gravity 1s outside the

pivot point. Of course, 1t will be stable again once it
lands!




9-4 Stability and Balance

People carrying heavy loads automatically adjust their
posture so their center of mass 1s over their feet. This can
lead to injury 1f the contortion 1s too great.




9-5 Elasticity; Stress and Strain

Hooke’s law: the change 1n length 1s proportional to the
applied force.

F = kAL (9-3)




9-5 Elasticity; Stress and Strain

This proportionality holds until the force reaches the
proportional limit. Beyond that, the object will still
return to 1ts original shape up to the elastic limit. Beyond
the elastic limit, the material 1s permanently deformed,
and 1t breaks at the breaking point.

Ultimate strength
\_ Proportional limit

O
plastc 15>

Elastic Breaking
limit point

Force, F

Elongation, Af



9-5 Elasticity; Stress and Strain

The change 1n length of a stretched object depends not
only on the applied force, but also on its length and
cross-sectional area, and the material from which it 1s
made.

The material factor is called Young’s modulus, and 1t has
been measured for many materials.
- force @ F
stress = aren Z
The Young’s modulus 1s then the stress divided by the

strain.

_ change in length Al
stramn = - = —
original length £,




9-5 Elasticity; Stress and Strain

In tensile stress, forces tend to stretch the object.

- P |

S 1|

| <
ST

(a) (b)



9-5 Elasticity; Stress and Strain

Compressional stress 1s exactly the opposite of tensional
stress. These columns are under compression.

- -



9-5 Elasticity; Stress and Strain

Shear stress tends to deform an object:

, N AN
o =)
r / |
| ! /
/ // /
/ /
/I I/ // B 0
||/ /
TR /
\VI /
F‘ h
Shear



EXAMPLE 9-10

Tension in piano wire. A 1.60-m-long steel piano wire has a diameter of 0.20 cm.
How great is the tension in the wire if it stretches 0.25 cm when tightened?

APPROACH We assume Hooke’s law holds, and use it in the form of Eq. 9-4,
finding E for steel in Table 9-1.

SOLUTION We solve for F in Eq. 9-4 and note that the area of the wire is
A =’ = (3.14)(0.0010 m)> = 3.14 X 10"°m* Then

Af

F =E—
{y

A

0.0025 m
1.60 m

(20 X 10“N/m2)( )(3.14 ¥ 10 1)

= 980 N.



9-6 Fracture

If the stress 1s too great, the object will fracture. The
ultimate strengths of materials under tensile stress,
compressional stress, and shear stress have been

measured. Tension
When designing a structure, i i
it 1s a good 1dea to keep [ -

anticipated stresses less
than 1/3 to 1/10 of the .
ultimate strength.

Compression



9-6 Fracture

A horizontal beam will be under both tensile and
compressive stress due to 1its own weight.

gmwm

Tension




Here 1s the
original design

9-6 Fracture

During
installation, 1t

was decided

of a walkway.
The central

that the long

supports were

supports were

to be 14
meters long.

A too difficult to
install; the
walkways were

installed this
way 1nstead.

(a)

(b)

o0




9-6 Fracture

The change does not appear major until you look at the
forces on the bolts:

The net force on the pin in When modified, the net force
the original design 1s mg, on both pins together 1s still
upwards. mg, but the top pin has a force

of 2mg on 1it— enough to
cause 1t to fail, which 1t did.

f - 1 2mg

(c) Force on pin A ‘ -
exerted by
vertical rod (d) Forces on pins
at A exerted by

vertical rods



EXAMPLE 9-11

Breaking the piano wire. The steel piano wire we discussed in Example 9-10 was
1.60 m long with a diameter of 0.20 cm. Approximately what tension force would
break it?

APPROACH We set the tensile stress F/A equal to the ultimate tensile strength

of steel given in Table 9-2, and we choose the highest value which represents
high-carbon steel.

SOLUTION The wire’s area is A = 7rr%, where r = 0.10cm = 1.0 X 10 m.
Table 9-2 tells us

F
1 2500 X 10°N/m?,

so the wire would likely break if the force exceeded

F = (2500 x 10°N/m?)(7)(1.0 X 10°m)> = 8000 N.



Problem 4:

What is the mass of the diver in Fig. 9—49 if she exerts
a torque of 1800 N.m on the board, relative to the left
(A) support post?



Problem 5:

(1) Calculate the forces F, and Fg that the supports exert on
the diving board of Fig. 9-49 when a 52-kg person stands at
its tip. (a) Ignore the weight of the board. (b) Take into
account the board’s mass of 28 kg. Assume the board’s CG
is at its center.

A B \

t *
e
1.0 m




Problem 17:

Three children are trying to balance on a seesaw, which
includes a fulcrum rock acting as a pivot at the center, [ —x— @&
and a very light board 3.2 m long (Fig. 9-57). Two '
playmates are already on either end. Boy A has a mass

of 45 kg, and boy B a mass of 35 kg. Where should girl m=45 kg g =D
C, whose mass is 25 kg, place herself so as to balance m
the seesaw? db
m=25kg
Solution:
*-----------. A >




Problem 18:

A shop sign weighing 215 N hangs from the end of a uniform
155-N beam as shown in Fig. 9-58. Find the tension in the
supporting wire (at 35.0°), and the horizontal and vertical
forces exerted by the hinge on the beam at the wall.

Paul's

Auto Repair

F,
FI[

(o4
|
L L2 fme
e
Y A »



Problem 32: P

Approximately what magnitude force, F,,, must
the extensor muscle in the upper arm exert on the
lower arm to hold a 7.3-kg shot put (Fig. 9-70)?
Assume the lower arm has a mass of 2.3 kg and
its CG is 12.0 cm from the elbow-joint pivot.




Problem 38 & 39:

A marble column of cross-sectional area 1.4 m? supports a mass of

25,000 kg. (a) What is the stress within the column? (b) What is the
strain?

By how much is the column in Problem 38 shortened if it is 8.6 m high?



Problem 43:

A 15-cm-long tendon was found to stretch 3.7 mm by a force of 13.4 N. The
tendon was approximately round with an average diameter of 8.5 mm.
Calculate Young’s modulus of this tendon.



Problem 46:

The femur bone in the human leg has a minimum effective cross section of about
3.0 cm?. How much compressive force can it withstand before breaking?



