Cellular Respiration
and Fermentation

1

Catabolic pathways yield energy
by oxidizing organic fuels

Glycolysis harvests chemical
energy by oxidizing glucose
to pyruvate

After pyruvate is oxidized,
the citric acid cycle completes
the energy-yielding oxidation
of organic molecules

During oxidative phosphorylation,
chemiosmosis couples electron
transport to ATP synthesis

Fermentation and anaerobic
respiration enable cells to produce
ATP without the use of oxygen

Glycolysis and the citric acid cycle
connect to many other metabolic
pathways




= The energy stored in the organic molecules of food ultimately comes from the
sun.

= Photosynthesis generates oxygen, as well as organic molecules used by the
mitochondria of eukaryotes as fuel for cellular respiration.
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= Catabolic pathways: Metabolic pathways that release stored energy by
breaking down complex molecules.
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= Transfer of electrons from fuel molecules (like glucose) to other molecules
plays a major role in these pathways.
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= Qrganic compounds possess potential energy as a result of the arrangement of

electrons in the bonds between their atoms. Compounds that can participate
in exergonic reactions can act as fuels.
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= How do catabolic pathways produce ATP?
failkall arell Cililee A5 CaS

v Through the activity of enzymes, a cell systematically degrades complex
organic molecules that are rich in potential energy to simpler waste products
that have less energy. Some of the energy taken out of chemical storage can
be used to do work; the rest is dissipated as heat.
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= Examples for catabolic pathways:

A) Fermentation: Partial degradation of sugars or other organic fuel that occurs
without the use of oxygen.
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B) Aerobic respiration: it’s the most effective catabolic pathway in which
oxygen is consumed as a reactant along with the organic fuel.
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v’ The cells of most eukaryotic and many prokaryotic organisms can carry out
aerobic respiration.
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C) Anaerobic respiration: similar to aerobic but the organism use substances
other than oxygen as reactants.
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= Technically, the term cellular respiration includes both aerobic and anaerobic
processes. However, it originated as a synonym for aerobic respiration

because of the relationship of that process to organismal respiration, in which
an animal breathes in oxygen.
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= The overall process of cellular respiration is as following:

Organic Carbon

+ O - + Water + E
compounds xygen dioxide arer netgy

= Carbohydrates, fats, and protein molecules from food can all be processed and
consumed as fuel. In animal diets, a major source of carbohydrates is starch, a
storage polysaccharide that can be broken down into glucose (C6H1206)
subunits.

D) (@l gall & A8l jaeS gyl s G saall el yam g Sl e JS alasiul (Say
S sa e las g ) o eSS Sy daatle S ga g (LEHN) ga o2ad) 8 Ol s g ST ulisY)

CeH 1,04 + 6 O, = 6 CO, + 6 H,O + Energy (ATP + heat)

= This breakdown of glucose is exergonic, having a free-energy change of -686
kcal (2,870 kJ) per mole of glucose decomposed (AG = -686 kcal/mol).
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v’ Recall that a negative AG (AG< 0) indicates that the products of the chemical
process store less energy than the reactants and that the reaction can happen
spontaneously—in other words, without an input of energy.
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= Catabolic pathways do not directly move flagella, pump solutes across
membranes, polymerize monomers, or perform other cellular work.
Catabolism is linked to work by a chemical drive shaft (ATP). To keep working,
the cell must regenerate its supply of ATP from ADP and ~P.
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= Cellular respiration is a combination of oxidation and reduction reactions.




e Redox Reactions: Oxidation and Reduction

= (QOxidation-Reduction reaction: reaction involved a transfer of one or more
electrons (e) from one reactant to another
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v" Oxidation: the loss of electrons from one substance
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v" Reduction: the addition of electrons to another substance
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v'In reduction, adding negatively charged electrons to an atom reduces the
amount of positive charge of that atom. In oxidation, the opposite happens.
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becomes oxidized
(loses electron)
Na - Cl —> Nat* + CI~
E— becomes reduced S

(gains electron)
We could generalize a redox reaction this way:

— becomes oxidized —
Xe~ —+ Y — X + Ye
L becomes reduced 1

v Reducing agent: the substance that has been oxidized (electron donor),
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v Oxidizing agent: the substance that has been reduced (electron acceptor), it’s

named “oxidizing agent” because it oxidizes the other substance.
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= Because an electron transfer requires both an electron donor and an acceptor,
oxidation and reduction always go hand in hand.

= Not all redox reactions involve the complete transfer of electrons from one
substance to another; some change the degree of electron sharing in covalent
bonds.
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o For example: Methane Combustion:

Reactants Products

[— becomes oxidized —;

CHy + 20, —>» CO; + Energy + 2H;0

H ; becomes reduced—’

H+C3%+H O——0 |[O3—C=—750 H—20+—H
H
Methane Oxygen Carbon dioxide Water
(reducing (oxidizing
agent) agent)

v The covalent electrons in methane are shared nearly equally between the
bonded atoms because carbon and hydrogen have about the same affinity for
valence electrons; they are about equally electronegative.
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v The two atoms of the oxygen molecule (02) share their electrons equally.
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v" When methane reacts with oxygen, forming carbon dioxide, electrons end up
shared less equally between the carbon atom and its new covalent partners,
the oxygen atoms, which are very electronegative. The electrons of the
covalent bonds spend more time near the oxygen.
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v In effect, the carbon atom has partially “lost” its shared electrons; thus,
methane has been oxidized and each oxygen atom has partially “gained”
electrons, so the oxygen molecule has been reduced.
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Energy must be added to pull an electron away from an atom.
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The more electronegative the atom (the stronger its pull on electrons), the
more energy is required to take an electron away from it.
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An electron loses potential energy when it shifts from a less electronegative
atom toward a more electronegative one.
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Oxidation of Organic Fuel Molecules during Cellular Respiration
— becomes oxidized —

CeH,0 + 60, —> 6CO, + 6H,0O + Energy
L becomes reduced —

Hydrogen is transferred from glucose to oxygen.
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The energy state of the electron changes as hydrogen (with its electron) is
transferred to oxygen.
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Organic molecules that have an abundance of hydrogen are excellent fuels
because their bonds are a source of electrons.
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In respiration, the oxidation of glucose transfers electrons to a lower energy
state, liberating energy that becomes available for ATP synthesis.
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v" In general, fuels with multiple C—H bonds oxidized into products with multiple
C—O bonds.
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= Cellular respiration occurs in a series of steps.
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Stepwise Energy Harvest via NAD* and the Electron Transport Chain

L ]
= |f energy is released from a fuel all at once, it cannot be harnessed efficiently
for constructive work.
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» Cellular respiration does not oxidize glucose (or any other organic fuel) in a

single explosive step either. Rather, glucose is broken down in a series of
steps, each one catalyzed by an enzyme.
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* Electrons are stripped from the glucose. Each electron travels with a proton—
(proton + electron = a hydrogen atom).
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* The hydrogen atoms are not transferred directly to oxygen, but instead are

usually passed first to an electron carrier, a coenzyme called nicotinamide
adenine dinucleotide, a derivative of the vitamin niacin.
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* This coenzyme is well suited as an electron carrier because it can cycle easily
between its oxidized form, NAD+, and its reduced form, NADH.
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* Asan electron acceptor, NAD+ functions as an oxidizing agent during

respiration.
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* How does NAD+ trap electrons from glucose and the other organic molecules

in food?
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v" Enzymes called dehydrogenases remove a pair of hydrogen atoms (2 electrons
and 2 protons) from the substrate, thereby oxidizing it.
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v The enzyme delivers the 2 electrons along with 1 proton to its coenzyme,
NAD+, forming NADH. The other proton is released as a hydrogen ion (H) into

the surrounding solution.
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H—Clj—OH + NAD*

Dehydrogenase

2 2

|
(|:=O + NADH + H*

v’ By receiving 2 negatively charged electrons but only 1 positively charged
proton, the nicotinamide portion of NAD+ has its charge neutralized when

NAD+ is reduced to NADH.
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Dehydrogenase l
o]
Reduction of NAD* H il
M H*

+ 2[H] —————— C— NH, +
(from food) Oxidation of NADH ‘ \
N” Nicotinamide

I (reduced form)

A Figure 9.4 NAD" as an electron shuttle. The full name for NAD',
nicotinamide adenine dinucleotide, describes its structure—the molecule consists
of two nucleotides joined together at their phosphate groups (shown in yellow)
(Nicotinamide is a nitrogenous base, although not cne that is present in DNA or
RNA; see Figure 5.23.) The enzymatic transfer of 2 electrons and 1 proton (H')
from an organic molecule in food to NAD* reduces the NAD* to NADH: Most of
the electrons removed from food are transferred initially to NAD*, forming NADH.




» Electrons lose very little of their potential energy when they are transferred
from glucose to NAD+.
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* Each NADH molecule formed during respiration represents stored energy.
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* This energy can be tapped to make ATP when the electrons complete their
“fall” in a series of steps down an energy gradient from NADH to oxygen.
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* How does the transfer of electrons occur?
v' Instead of occurring in one explosive reaction, respiration uses an electron
transport chain to break the fall of electrons to oxygen into several energy-
releasing steps.
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v An electron transport chain consists of a number of molecules, mostly
proteins, built into the inner membrane of the mitochondria of eukaryotic cells
(and the plasma membrane of respiring prokaryotes).

‘;15'!.'\.“ e Liiall ‘;BJ}_A}Q GL"_\L\_.-\:]JJ.\LG.ALML'_IMJ")A.“ (e e wu;)ﬂY‘@Muﬁ
el LRl 3 ALalud) oda aa g5 bl il Aty LA 8 5 gil) Ajiga LA b Ly i giall

v’ Electrons removed from glucose are shuttled by NADH to the “top,” higher-

energy end of the chain. At the “bottom,” lower-energy end, O2 captures
these electrons along with hydrogen nuclei (H+), forming water.
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< Anaerobically respiring prokaryotes have an electron acceptor at the end of
the chain that is different from O2.
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v' Electron transfer from NADH to oxygen is an exergonic reaction with a free-
energy change of -53 kcal/mol (-222 kJ/mol).
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& Pathway of electrons: Glucose = NADH - Electron transport chain 2
Oxygen.
v' Instead of this energy being released and wasted in a single explosive step,
electrons cascade down the chain from one carrier molecule to the nextin a
series of redox reactions, losing a small amount of energy with each step until
they finally reach oxygen, the terminal electron acceptor, which has a very
great affinity for electrons.
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Free energy, G ————»

Hz + 1 02

Explosive
release of
heat and light
energy

\J

H0

(a) Uncontrolled reaction.
The one-step ic reaction
of hydrogen with oxygen to
form water releases a large
amount of energy in the form

of heat and light: an explosion.

Free energy, G ——»
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2H + 'h 0,
(from food via NADH)
Controlled
release of
2H* + 2 energy for
synthesis of
ATP
'.‘% *R ATP
- X 2 ATP
% 2
23 *\ *
23 ‘ﬁ]‘?
%3
*

Y .  J
\ 5 1t Y20,
H,0

(b) Cellular respiration. In cellular respiration, the
same reaction occurs in stages: An electron
transport chain breaks the “fall” of electrons in this
reaction into a series of smaller steps and stores
some of the released energy in a form that can be
used to make ATP. (The rest of the energy is
released as heat.)




e The Stages of Cellular Respiration: A Review

1) Glycolysis.

2) Oxidation of pyruvate and citric acid cycle.

3) Oxidative phosphorylation = Electron transport chain + Chemiosmosis.

GLYCOLYSIS PYRUVATE / OXIDATIVE
OXIDATION CITRIC PHOSPHORYLATION l
| ACID
Glucose mip Pyruvate =sp Acetyl CoA # (Electron transport
\ and chemiosmosis)

CYTOSOL

Substrate-level Substrate-level Oxidative
phosphorylation phosphorylation phosphorylation

A) Glycolysis:
Occurs in the cytosol.
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Glycolysis breaks glucose into two molecules of a compound called pyruvate.
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Glycolysis generates ATP by substrate level phosphorylation + NADH.
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B) Oxidation of pyruvate
In eukaryotes, pyruvate produced from glycolysis enters the mitochondria and
oxidized to a compound called acetyl CoA.
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Acetly COA (camy S ja Zl0Y
No production of ATP or NADPH.
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C) Citric Acid cycle "Krebs cycle / Tricarboxylic acid cycle"




» Acetyl CoA enters to this cycle and in it the breakdown of glucose to CO2 is
completed.
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* Qccurs in mitochondria in eukaryotes and in the Cytosol in prokaryotes
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* Produces ATP by substrate level phosphorylation and produces NADH-FADH2.
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D) Oxidative phosphorylation:
» Oxidative phosphorylation: Electron transport chain + Chemiosmosis.
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* QOccurs in the inner membrane of mitochondria.
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* The electron transport chain accepts electrons from NADH or FADH2 and
passes these electrons down the chain. At the end of the chain, the electrons
are combined with molecular oxygen and hydrogen ions (H+), forming water.
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* The energy released at each step of the chain is stored in a form the
mitochondrion can use to make ATP from ADP.
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v Oxidative phosphorylation accounts for almost 90% of the ATP generated by
respiration.
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v This mode of ATP synthesis is called oxidative phosphorylation because it is
powered by the redox reactions of the electron transport chain.




Alale 8 J1 Y15 auslill COleli o Led AUl jacaa Y 4pauslill 3 ja0all Al ) o3 Cipens
b Iy s

= Substrate-level phosphorylation:
v Occurs when an enzyme transfers a phosphate group from a substrate
molecule to ADP, rather than

adding an inorganic phosphate to ¥ Figure 9.7 Substrate-level phosphorylation. Some ATP is
ADP . idati made by direct transfer of a phosphate group from an organic substrate
as In oxidative to ADP by an enzyme. (For examples in glycolysis, see Figure 9.9, steps 7

phosphorylation. and 10))
Ao sama Ji a3 & Ledic Alaall oda Caoas
0258 ADP ss 0 (N ) sall aal (e il 5
Ao sama Jhas 055 Ol 0= Y ¢ ATP

el Caaay 3 Jie (g pme e il il -
Aokl 5 i) Substrate

Product

* For each molecule of glucose degraded to carbon dioxide and water by
respiration, the cell makes up to about 32 molecules of ATP, each with 7.3
kcal/mol of free energy.
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» Glycolysis is the process of splitting sugar. Glucose, a six-carbon sugar, is split
into two three-carbon sugars which oxidized and their remaining atoms
rearranged to form two molecules of pyruvate.
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= All of the carbon originally present in glucose is accounted for in the two
molecules of pyruvate; no carbon is released as CO2 during glycolysis
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v" The net energy vield from glycolysis, per

Pyruvate is the ionized form of pyruvic acid.
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(@) Animation: Glycolysis

Glycolysis can be divided into two phases:

1. The energy investment phase: the cell .\ iestment phase

spends 2 ATP molecules. c;m.meT
Al 4 2used . 2ADP+2(P

ATP (e Alall allging (ailal) dlBghn) dls e

2. The energy payoff phase: The cell eneray Payoft Phase l
produces 4 ATP - 2 NADH - 2 H20 - 2 4ADP+4 ()
pyruvate. ‘
2NAD* + 4e +4H , 2 -
ly Al Aalhll el Als
G ATP Sl 4 gl [aslall Fla )l Ala e 2 v 210

b g om Ga a5 el 2w )aNADH

glucose molecule, is 2 ATP plus 2 NADH, the cell produces 4 ATP and spends 2
ATP --> 4-2= 2ATP.

= Glycolysis occurs whether or not 02 is present. However, if 02 is present, the
chemical energy stored in pyruvate and NADH can be extracted by pyruvate

oxidation, the citric acid cycle, and oxidative phosphorylation.
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= Glycolysis occurs in 10 steps.

A) Energy investment phase: it occurs in 5 steps; each step has its own enzyme.
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Glyceraldehyde
3-phosphate (G3P)

HC=0
W Glucose Fructose Fructose d lion
Glucose 6-phosphate 6-phosphate 1,6-bisphosphate - —
CH OH ADP o ® CH,0—(@® CH,0H ADP '@ —och, CH0—® o9
0. 0 \ { Isomerase
— - H o HO  S— 1Ry
Hexokinase HONG__Y/OH Phosphogluco- | ™ o Phospho- HHO o Aldolase | pihydroxyacetone
isomerase fructokinase phosphate (DHAP)
? q TH,O—@
Hexoklnase transfers Glucose 6- Phosphofructokinase Aldolase cleaves >
a phosphate group phosphate is transfers a phosphate the sugar CH,0H

from ATP to glucose,
making it more
chemically reactive.
The charge on the
phosphate also traps

converted to
fructose
6-phosphate.

group from ATP to the
opposite end of the
sugar, investing a second
molecule of ATP. This is
a key step for regulation

molecule into
two different
three-carbon

sugars.

Conversion between DHAP
and G3P: This reaction
never reaches equilibrium;

G3P is used in the next step

the sugar in the cell. as fast as it forms.

of glycolysis.
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fructose-6- I glucpse-6-phosphate J:s»% phosphogluco-isomerase ~ ¥ a5 (2
.phosphate

fructose-6- JATP e x> (x Giliu ¢ de gaaa Ji phosphofructokinase a3 a & (3
fructosel,6-bisphosphate ai phosphate
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.DHAP + G3P
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B) Energy payoff phase: it occurs in 5 steps; each has its own enzyme.

The energy payoff phase occurs after glucose is split into two three-carbon
sugars. Thus, the coefficient 2 precedes all molecules in this phase.

GLYCOLYSIS: Energy Payoff Phase

2H,0

2 ADP
2NAD*  +2H* 2 ADP 2 2 2 2
o | o o o
2 | \ |
. (D—O(|=0 L <I:—o l _ C=0 L <|:—o . ?—o
Triose fon Phospho- | T Mot | " 17 C || Exciae jo-m Prwate T
phosphate 2@ CH,0—® glycerokinase Ho—® glyceromutase CHOH ] kinase CHy
m ! L ! \ !
L 1,3-Bisphospho- 3-Phospho- 2-Phospho- Phosphoenol- Pyruvate
? glycerate glycerate glycerate pyruvate (PEP)
Two sequential reactions: The phosphate group is This enzyme Enolase causes a The phosphate
(1) G3P is oxidized by the transferred to ADP relocates the double bond to form group is transferred
transfer of electrons to (substrate-level remaining in the substrate by from PEP to ADP
NAD*, forming NADH. phosphorylation) in an phosphate extracting a water (a second example
(2) Using energy from this exergonic reaction. The group. molecule, yielding of substrate-level

exergonic redox reaction,
a phosphate group is
attached to the oxidized
substrate, making a
high-energy product.

carbonyl group of G3P
has been oxidized to

the carboxyl group
(—CO00") of an organic
acid (3-phosphoglycerate).

phosphoenolpyruv
(PEP), a compound
with a very high
potential energy.

ate phosphorylation),

forming pyruvate.

@ BioFlix® Animation: Glycolysis
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v’ Kinase: transfers a

phosphate group. Jsaid Sl dliaiall Cliu sil) de gana é}“ oy H}\g‘ ?_93.-.‘ (8
v Isomerase: produces an .2-Phosphoglycerate (!
isomer. A Adagl y (S ) (53 Lea sla eg i AL A 1Y) A58 (9
v’ Aldolase: cleaves. Adle A8l g3 S yo L)
v" Dehydrogenase: produces Il Sy e Sla all e gana Jais (10
NADH.
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v" Mutase: changes position
of phosphate group.

* When 02 is present; the pyruvate in eukaryotic cells enters a mitochondrion,
where the oxidation of glucose is completed.

3081 o5 LS ginall ) gl J3 (o) i AN 3 5 5 S cpamnSY1 55, Laic
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" |n aerobically respiring prokaryotic cells, this process occurs in the cytosol.
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e Oxidation of Pyruvate to Acetyl CoA
* Upon entering the mitochondrion pyruvate is converted to a compound called
acetyl coenzyme A, or acetyl CoA.
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» Pyruvate is a charged molecule, so in eukaryotic cells it must enter the
mitochondrion via active transport, with the help of a transport protein.

Tall Jal) (3 5k e L S sisal) UDUA ) Jay ils il 5 () sadia o5 m gl g
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» This step links glycolysis and the citric acid cycle
. ;__USE&.\;}L“”S,..JI Jadl) 8 ghadll sl Jay 3

* |tis carried out by a multi-enzyme complex (Pyruvate dehydrogenase
complex) that catalyzes three reactions:

¢ Pyruvate dehydrogenase complex e Clag 31 saxia S jo DA (pe dla jall 028 adad
1) Pyruvate's carboxyl group-COO is released and given off as a molecule of CO2.
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2)The remaining two-carbon fragments get oxidized and the electrons are
transferred to NAD+, storing energy in the form of NADH.
o2 A 5 (<l g S N8 (1) Airial) A g0 HSI) Aaalll 028 S ¢ (50 KU (e (a0 A
NADH. ! Jsas s 4a () 3 +NAD () b5 iyl

3) Coenzyme A (COA), a sulfur-containing compound derived from a B vitamin, is
attached via its sulfur atom to the two-carbon intermediate, forming acetyl CoA.
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CYTOSOL MITOCHONDRION

Coenzyme A

@
= W o\ &

a1 NAD* [NADH|+H*  Acetyl CoA

Pyruvate

e

Transport protein




» Each glucose molecules gives 2 pyruvate = 2 Acetyl CoA.
e The Citric Acid Cycle (Krebs cycle -

Tricarboxylic acid cycle)

v’ Each Acetyl CoA that enters the cycles
produces:
1 ATP by substrate level phosphorylation.
3NADH coenzyme.
1 FADH2 coenzyme.
2 CO2.

v" Each glucose molecules gives 2 pyruvates = 2
Acetyl CoA produce:
2 ATP.
6NADH.
2 FADH2.
4CO2.

* The citric acid cycle consists of 8 steps:

' © Acetyl CoA (from
i_o u;?ation of Wrrl‘;watE) I
adds its two-carbon acety|
I group to oxaloacetate, gne;rr::! i:o

Acotyl Co producing citrate. its isomer,
Con isocitrate, by
© The substrate removal of
Is oxidized, one water
reducing NAD* to molecule and
NADH and addition of
regenerating another.
oxaloacetate.

Isocitrate
axidlzed.
reducing
NAD* to
NADH. Then
the resulting
compound
loses a CO,
molecule.

rearranges
bonds in the
substrate,

Q Another CO
is lost, and thez
resulﬂn\!;"d
Qo compound is
oxidized,
o reducing NAD*
FAD, forming Lo
FADH, and e remain-

o, ing molecule is
onidizing then attached

e to coenzyme A
m is displaced by a by an unstable
pi ate group, which is bond.

transferred to GDP, forming GTP,
a molecule with functions

E

ua, as mown. to generate ATP.
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* |n eukaryotic cells, all the citric acid cycle enzymes are located in the
mitochondrial matrix except for the enzyme that catalyzes step 6, which
resides in the inner mitochondrial membrane.

LS saall 8 pdin 8 G S Alls €l gl aat il crilay 331 a5 ¢ 315l Agaall LA b
L€ ol Aol Ll 8 a5 Lol Ailall (e dusdlidl 8 hadl) Biat il cllay Y1 il

= FAD (Flavin adenine dinucleotide) is derived from riboflavin, a B vitamin.

= Oxidative phosphrylation includes electron transport chain and chemiosmosis.

* Molecules of NADH (and FADH2) account for most of the energy extracted
from each glucose molecule.




e The Pathway of Electron Transport

= The electron transport chain is a collection of molecules embedded in the
inner membrane of the mitochondrion in eukaryotic cells. In prokaryotes,
these molecules reside in the plasma membrane.
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= The folding of the inner membrane to form cristae increases its surface area,
providing space for thousands of copies of each component of the electron

transport chain in a mitochondrion.
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= Most components of the chain are proteins, which exist in multi-protein

complexes numbered through IV.
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= Tightly bound to these proteins are prosthetic groups, non-protein
components such as cofactors and coenzymes essential for the catalytic

functions of certain enzymes
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Free energy (G) relative to O, (kcal/mol)
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NADH | (least electronegative)

Complexes I-1V each
consist of multiple
proteins with electron
carriers.

Electron transport chain
Electrons (from NADH or FADH,)
move from a less electronegative
electron carrier (one with a lower affinity
for electrons) to a more electronegative electron
carrier down the chain, releasing free energy.

The last electron carrier (Cyt a;)
passes its electrons to oxygen,
which is very electronegative.

2H + %
(most electronegative) \

7
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= The transfer of electrons goes as the following:
< NADH:

o Electrons acquired from glucose by NAD+ during glycolysis and the citric acid
cycle are transferred from NADH to the first molecule of the electron transport
chain in complex I.

s (o S Al g g Sl Jaill idee 356 slll (pe A Al el 5 I Jas
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o« This molecule is a flavoprotein, so named because it has a prosthetic group
called flavin mononucleotide (FMN).

FMN (onsi de sanse 4SDLeY flavoprotein e Al A o5 5 Jf

o« The flavoprotein returns to its oxidized form as it passes electrons to an iron-
sulfur protein in complex |, one of a family of proteins with both iron and
sulfur tightly bound.

Jiis s flavoprotein J) scs s Sty <NADH (3 <5 5SIY) flavoprotein J) Juiial s
Suda g S e s Oy 58 5 iron-sulfur protein J <l g SY)

oc The iron-sulfur protein then passes the electrons to a compound called
ubiguinone (Q).

.ubiquinone (s S e I cili S Jaiss B

o This electron carrier is a small hydrophobic molecule, the only member of the
electron transport chain that is not a protein. Ubiquinone is individually mobile
within the membrane rather than residing in a particular complex.

v Another name for ubiquinone is coenzyme Q.
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Most of the remaining electron carriers between ubiquinone and oxygen are
proteins called cytochromes.
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o Their prosthetic group, called a heme group, has an iron atom that accepts and
donates electrons
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o The electron transport chain has several types of cytochromes, each named
“cyt” with a letter and number to distinguish it as a different protein with a
slightly different electron-carrying heme group.
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o The last cytochrome of the chain, Cyt a3, passes its electrons to oxygen, which
is very electronegative. Each oxygen atom also picks up a pair of hydrogen ions

(protons) from the aqueous solution, neutralizing the -2 charge of the added
electrons and forming water.

Ay eS 4l 531 Y1 1 il SV o e ey Cyt @3 (o <l g IO il A

Jas e
S FADH::
o« FADH: adds its electrons from within complex II, at a lower energy level than
NADH does.
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= Although NADH and FADH2 each donate an equivalent number of electrons (2)
for oxygen reduction, the electron transport chain provides about one-third
less energy for ATP synthesis when the electron donor is FADH; rather than
NADH.

OS) aanY) J) 3AY 5 SN (e 2l i laies NADH and FADH; (e JS O 0 a2l
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—>The electron transport chain makes no ATP directly.
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e Chemiosmosis: The Energy-Coupling Mechanism

Populating the inner membrane of the mitochondrion or the prokaryotic
plasma membrane are many copies of a protein complex called ATP synthase,
the enzyme that makes ATP from ADP and inorganic phosphate.
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ATP synthase works like an ion pump running in reverse. lon pumps usually use
ATP as an energy source to transport ions against their gradient.

Fal ATP J) Gl ja Gl W) Cildiae paaiud Gl o) Claiae aal (uSlaa o 33V 108 Jee
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Rather than hydrolyzing ATP to pump protons against their concentration

gradient, under the conditions of cellular respiration ATP synthase uses the
energy of an existing ion gradient to power ATP synthesis.
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The power source for ATP synthase is a difference in the concentration of H+
on opposite sides of the inner mitochondrial membrane.
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LA sisall

Chemiosmosis: the process, in which energy stored in the form of a hydrogen
ion gradient across a membrane is used to drive cellular work such as the
synthesis of ATP.
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= The following figure shows how chemiosmosis works and the structure of ATP
Synthase:
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mitochondric
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© H* ions flowing
down their gradient
enter a channel in

" | a stator, which is

anchored in the
membrane.

@ H* ions enter binding
sites within a rotor,
changing the shape of
each subunit so that

the rotor spins within
the membrane.

© Each H* ion makes one
complete turn before
leaving the rotor and
passing through a second
channel in the stator

into the mitochondrial
matrix.

© spinning of the
rotor causes an internal

rod to spin as well. This
rod extends like a stalk

into the knob below it,
which is held stationary
by part of the stator.

© Tuming of the rod
activates catalytic sites
in the knob that
produce ATP from ADP
and ®),.

= ATP synthase is a multi-subunit complex with four main parts, each made up of

multiple polypeptides
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= Protons move one by one into binding sites on one of the parts (the rotor),
causing it to spin in a way that catalyzes ATP production from ADP and

inorganic phosphate.

geans A8y lay 2 31 01550 (W (525 Las ¢ 2 Jad) o2 e HAT () ol )] g (e (555l iy
L ADPss 3 ) Ay pume b i g e sane dlinl I (o ATP iy 3o Ll

= How is the H+ gradient generated?
v’ By the electron transport chain.




= The chain is an energy converter that uses the exergonic flow of electrons
from NADH and FADH2 to pump H+ across the membrane, from the
mitochondrial matrix into the intermembrane space.
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= The H+ has a tendency to move back across the membrane, diffusing down its
gradient (from the intermembrane space to the mitochondrial matrix).
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= The ATP synthases are the only sites that provide a route through the
membrane for H+. As we described previously, the passage of H+ through ATP
synthase uses the exergonic flow of H+ to drive the phosphorylation of ADP.
Thus, the energy stored in an H+ gradient across a membrane couples the
redox reactions of the electron transport chain to ATP synthesis.
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Proton-motive force: The H+ gradient across the inner mitochondrial
membrane.
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.protein-motive force

Chemiosmosis is an energy-coupling mechanism that uses energy stored in the
form of an H+gradient across a membrane to drive cellular work.
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= Chloroplasts use chemiosmosis to generate ATP during photosynthesis; in
these organelles, light (rather than chemical energy) drives both electron flow
down an electron transport chain and the resulting H+ gradient formation.
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= Prokaryotes generate H+ gradients across their plasma membranes. They then
tap the proton-motive force not only to make ATP inside the cell but also to
rotate their flagella and to pump nutrients and waste products across the
membrane.
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= Peter Mitchell was awarded the Nobel Prize in 1978 for originally proposing
the chemiosmotic model.
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e An Accounting of ATP Production by Cellular Respiration
= During cellular respiration, energy flows in the following sequence:

Glucose = NADH - electron transport chain = proton-motive force > ATP.
= Let’s calculate the total number of ATP produced:
rs A L) Adee (pe 43U ATP) Gl Ja 230 lual
v" 4 ATP are produced directly by substrate-level phosphorylation during
glycolysis and the citric acid cycle

Jaill ils ye U Substrate level phosphorylation ddawl s ydle JS& ATP Gy Ja 4 5
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v Each NADH that transfers a pair of electrons from glucose to the electron
transport chain contributes enough to the proton-motive force to generate a
maximum of about 3 ATP.

ATP i i 3 SV e 7Y 488 28l (10 4S5 NADH esja S pab

GLYCOLYSIS / \ OXIDATIVE
CITRIC PHOSPHORYLATION
ACID
Glucose =ap 2 Pyruvate CYCLE (Electron transport
Y and chemiosmosis)

/ ¥, r,

[ +2ArP +2 ATP + about 26 or 28 ATP |
by substrate-level by substrate-level by oxidative phosphorylation, depending
phosphorylation phosphorylation on which shuttle transports electrons

from NADH in cytosol

\ J

v

) . About  ~
Maximum per glucose:

= Notice that the total number of ATP produced is inexact (either 30 or 32).
Why?
A e A ATPY) @l e 2ae o LY

1) Phosphorylation and the redox reactions are not directly coupled to each
other, so the ratio of the number of NADH molecules to the number of ATP
molecules is not a whole number.
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oc 1 NADH results in 10 H+ being transported out across the inner mitochondrial
membrane. The number of H+ that must reenter the mitochondrial matrix via
ATP synthase to synthesize 1 ATP is 4.
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o Single molecule of NADH generates enough proton-motive force for the
synthesis of 2.5 ATP.

2.5ATP € NADH ss JS oo iy

o Single molecule of FADH2 generates enough proton motive force for the
synthesis of 1.5 ATP.

.1.5 ATP € FADH2 s a JS oo zib

2) The ATP yield varies slightly depending on the type of shuttle used to transport
electrons from the cytosol into the mitochondrion; the 2 electrons of NADH
captured in glycolysis must be conveyed into the mitochondrion by one of several
electron shuttle systems.
e il SV i aodisall 8l g g s (a1 il 8 DB iy G A CaliAS
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v" If the electrons are passed to FAD, as in brain cells, only about 1.5 ATP can
result from each NADH that was originally generated in the cytosol.
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v" If the electrons are passed to mitochondrial NAD+, as in liver cells and heart
cells, the yield is about 2.5 ATP per NADH.
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3) The use of the proton-motive force generated by the redox reactions of
respiration to drive other kinds of work
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o For example, the proton-motive force powers the mitochondrion's uptake of

pyruvate from the cytosol.
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If all the proton-motive force generated by the electron transport chain were
used to drive ATP synthesis, one glucose molecule could generate a maximum
of 28 ATP produced by oxidative phosphorylation plus 4 ATP from substrate-
level phosphorylation to give a total yield of about 32 ATP (or only about 30
ATP if the less efficient shuttle were functioning).
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The complete oxidation of a mole of glucose releases 686 kcal of energy under
standard conditions (G = -686 kcal/mol).

(5 IS LS 686 Lo laia A8l (ha duaS ) oS Il e aa) 5 J g0 BT dlee (e iy
Phosphorylation of ADP to form ATP stores at least 7.3 kcal per mole of ATP.
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To calculate the total amount of energy consumed to produce 32 ATP -
7.3*32=233.6 Kcal.
Divide this number by the total amount of energy produced = 233.6/686 = .34

About 34% of the potential chemical energy in glucose has been transferred to
ATP.
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The rest of the energy stored in glucose is lost as heat.
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One type of tissue, called brown fat, is made up of cells packed full of
mitochondria.
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The inner mitochondrial membrane contains a channel protein called the
uncoupling protein that allows protons to flow back down their concentration
gradient without generating ATP.
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Activation of these proteins in hibernating mammals results in ongoing
oxidation of stored fuel (fats), generating heat without any ATP production.
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In the absence of such an adaptation, the buildup of ATP would eventually
cause cellular respiration to be shut down by regulatory mechanism.
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There are two general mechanisms by which certain cells can oxidize organic
fuel and generate ATP without the use of oxygen:
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(1) Anaerobic respiration (2) Fermentation

The distinction between these two is that an electron transport chain is used in
anaerobic respiration but not in fermentation.
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The electron transport chain is also called the respiratory chain because of its
role in both types of cellular respiration.
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Anaerobic respiration:

oc Organisms have an electron transport chain but do not use oxygen as a final

electron acceptor at the end of the chain.
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o Oxygen performs this function very well because it is extremely

electronegative, but other, less electronegative substances can also serve as
final electron acceptors. Some “sulfate-reducing” marine bacteria, for
instance, use the sulfate ion (SO4?") at the end of their respiratory chain.
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Its produces ATP, but H2S (hydrogen sulfide) is made as a by-product rather
than water.
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Fermentation:

Fermentation is a way of harvesting chemical energy without using either
oxygen or any electron transport chain.
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Fermentation is an extension of glycolysis that allows continuous generation of
ATP by the substrate-level phosphorylation of glycolysis.
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.Substrate-level phosphorylation

< For this to occur there must be a sufficient supply of NAD+ to accept
electrons during the oxidation step of glycolysis. Without some mechanism
to recycle NAD+ from NADH, glycolysis would soon deplete the cell's pool
of NAD+ by reducing it all to NADH and would shut itself down for lack of an
oxidizing agent.
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v Under aerobic conditions, NAD+ is recycled from NADH by the transfer of
electrons to the electron transport chain.
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v" An anaerobic alternative is to transfer electrons from NADH to pyruvate, the
end product of glycolysis.
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e Types of Fermentation
Fermentation includes glycolysis plus reactions that regenerate NAD+ by
transferring electrons from NADH to pyruvate or derivatives of pyruvate.

JUA e +NAD Sl Ul o Jasi (5 a1 cdlelss ) ALyl o Sl Jladll jeddll ey
Adlaiie g Cugd g yull IV NADH (e <l g S Ja

= The NAD+ can then be reused to oxidize sugar by glycolysis, which nets two
molecules of ATP by substrate-level phosphorylation.
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= Two types of fermentation:
(1) Alcohol fermentation.

(2) Lactic acid fermentation.

= Alcohol fermentation:
1) Pyruvate is converted to acetaldehyde by releasing CO2.
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2) Acetaldehyde is reduced by NADH to ethanol.
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v This regenerates the supply of NAD+ needed for the continuation of glycolysis.

v" Many bacteria carry out alcohol
fermentation under anaerobic
conditions.

v" Human use yeast in brewing,
winemaking, and baking.
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v" The CO2 bubbles generated by
baker's yeast during alcohol
fermentation allow bread to rise.
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= Lactic acid fermentation:

v Pyruvate is reduced directly by
NADH to form lactate as an end
product.
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v No release of CO2.

v’ Lactate is the ionized form of lactic
acid.
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v' Lactic acid fermentation by certain

2 ADP +Qj§f§’ &

c=0
Glucose [
CH,y
2 Pyruvate
L REY 7 N
+ 2 H*
L\
H—C—OH é: o)
| < NAD* REGENERATION |
CHy CH,
2 Ethanol 2 Acetaldehyde
(a) Alcohol fermentation
2ADP+ 2(P)
Glucose
?,
=
o | 2ENABH] 2[NABH| (7O
| +2H* CH,
c=0
| 2 Pyruvate
H—C—0OH
| NAD* REGENERATION
CH,
2 Lactate

(b) Lactic acid fermentation

fungi and bacteria is used in the dairy industry to make cheese and yogurt.
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o Human muscle cells make ATP by lactic acid fermentation when oxygen is
scarce. This occurs during strenuous exercise, when sugar catabolism for ATP
production outpaces the muscle's supply of oxygen from the blood.
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SUnder these conditions, the cells switch from aerobic respiration to
fermentation. The lactate that accumulates was previously thought to cause the
muscle fatigue and pain that occurs a day or so after intense exercise.
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S Evidence shows that within an hour, blood carries the excess lactate from the
muscles to the liver, where it is converted back to pyruvate by liver cells. Because
oxygen is available, this pyruvate can then enter the mitochondria in liver cells
and complete cellular respiration.
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e Comparing Fermentation with Anaerobic and Aerobic Respiration

= Fermentation, anaerobic respiration, and aerobic respiration are three
alternative cellular pathways for producing ATP by harvesting the chemical
energy of food.
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< Similarities:
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= All three use glycolysis to oxidize glucose and other organic fuels to pyruvate,
with a net production of 2 ATP by substrate - level phosphorylation.
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= |Inall three pathways, NAD+ is the oxidizing agent that accepts electrons from
food during glycolysis.
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< Differences:

1. The contrasting mechanisms for oxidizing NADH back to NAD+, which is
required to sustain glycolysis.
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- In fermentation, the final electron acceptor is an organic molecule such as
pyruvate (lactic acid fermentation) or acetaldehyde (alcohol fermentation).
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- In cellular respiration, by contrast, electrons carried by NADH are transferred to
an electron transport chain, which regenerates the NAD+ required for glycolysis.
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2. Another major difference is the amount of ATP produced.
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- Fermentation yields 2 ATP.

- Cellular respiration yields 32 ATP up to 16 times as much as does
fermentation.

—> In aerobic respiration, the final electron acceptor is oxygen.
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—> In anaerobic respiration, the final acceptor is another molecule that is
electronegative, although less so than oxygen.
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= Obligate anaerobes:
v’ Organisms that carry out only fermentation or anaerobic respiration.
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v’ These organisms cannot survive in the presence of oxygen, some forms of
which can actually be toxic if protective systems are not present in the cell.
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< A few cell types, such as cells of the vertebrate brain, can carry out only
aerobic oxidation of pyruvate, not fermentation.
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= Facultative anaerobes:
v Organisms that can make enough ATP to survive using either fermentation or

respiration.
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v" Include yeast and bacteria.

v" On the cellular level, our muscle cells behave as facultative anaerobes. In
such cells, pyruvate is a fork in the metabolic road that leads to two
alternative catabolic routes:
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oc Under aerobic conditions, pyruvate WO 0, present
can be converted to acetyl CoA, and Fermentation Af;;’p‘?gtcig'r'l“""’
oxidation continues in the citric acid
cycle via aerobic respiration.
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Glycolysis




o Under anaerobic conditions, lactic acid fermentation occurs: Pyruvate is
diverted from the citric acid cycle, serving instead as an electron acceptor to
recycle NAD+.
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o To make the same amount of ATP, a facultative anaerobe has to consume
sugar at a much faster rate when fermenting than when respiring.
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= Glycolysis is the most widespread metabolic pathway.
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= The cytosolic location of glycolysis also implies great antiquity; the pathway
does not require any of the membrane-enclosed organelles.
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* Free glucose molecules are not common in the diets of humans and other
animals. We obtain most of our calories in the form of fats, proteins, and
carbohydrates such as sucrose and other disaccharides, and starch, a
polysaccharide. All these organic molecules in food can be used by cellular
respiration to make ATP.
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e Carbohydrates:
v" Glycolysis can accept a wide range of carbohydrates for catabolism.
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In the digestive tract:

oc Starch is hydrolyzed to glucose, which can then be broken down in the cells by
glycolysis and the citric acid cycle.
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o Glycogen, the polysaccharide that humans and many other animals store in
their liver and muscle cells, can be hydrolyzed to glucose between meals as
fuel for respiration.
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o« The digestion of disaccharides, including sucrose, provides glucose and other
monosaccharides as fuel for respiration.
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e Proteins:

v' Proteins can also be used for fuel, but first they must be digested to their
constituent amino acids. Many of the amino acids are used by the organism
to build new proteins. Amino acids present in excess are converted by
enzymes to intermediates of glycolysis and the citric acid cycle.
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v Before amino acids can feed into glycolysis or the citric acid cycle, their
amino groups must be removed, a process called deamination.

lee A e 43 Aalall (aY) Ao gama caeY) (meall Sy o)) Gang ¢ palaall o2 aladin) Jé

. Deamination saxs

v The nitrogenous waste is excreted from the animal in the form of ammonia
(NH3), urea, or other waste products
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e Fats:
v" Catabolism can also harvest energy
stored in fats obtained either from food
or from fat cells in the body.
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v' After fats are digested to glycerol and
fatty acids, the glycerol is converted to
glyceraldehyde 3phosphate, an
intermediate of glycolysis.
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SMost of the energy of a fat is stored in the
fatty acids.

NH,

Proteins Carbohydrates Fats
Amino Sugars Glycerol  Fatty
acids acids
GLYCOLYSIS
(P)

OXIDATIVE
PHOSPHORYLATION
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v A metabolic sequence called beta oxidation breaks the fatty acids down to
two-carbon fragments, which enter the citric acid cycle as acetyl CoA.
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v NADH and FADH2 are also generated during beta oxidation; they can enter
the electron transport chain, leading to further ATP production.
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v' Fats make excellent fuels, in large part due to their chemical structure and the
high energy level of their electrons (present in many C-H bonds, equally
shared between carbon and hydrogen) compared to those of carbohydrates.
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v A gram of fat oxidized by respiration produces more than twice as much ATP
as a gram of carbohydrate.
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e Biosynthesis (Anabolic Pathways)

= Not all the organic molecules of food are destined to be oxidized as fuel to
make ATP. In addition to calories, food must also provide the carbon skeletons
that cells require to make their own molecules.
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= Some organic monomers obtained from digestion can be used directly.
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v The body needs specific molecules that are not present as such in food.

v Compounds formed as intermediates of glycolysis and the citric acid cycle can
be diverted into anabolic pathways as precursors from which the cell can
synthesize the molecules it requires.
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o For example:
1) Humans can make about half of the 20 amino acids in proteins by
modifying compounds siphoned away from the citric acid cycle; the rest are
"essential amino acids" that must be obtained in the diet.
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2) Glucose can be made from pyruvate, and fatty acids can be synthesized
from acetyl CoA.
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v In addition, glycolysis and the citric acid cycle function as metabolic
interchanges that enable our cells to convert some kinds of molecules to
others as we need them.
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o« For example, an intermediate compound generated during glycolysis,
dihydroxyacetone phosphate can be converted to one of the major precursors
of fats.
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e Regulation of Cellular Respiration via Feedback Mechanisms

= The cell does not waste energy making more of a particular substance than it
needs. If there is a surplus of a certain amino acid, for example, the anabolic
pathway that synthesizes that amino acid from an intermediate of the citric
acid cycle is switched off.
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= The most common mechanism for this control is feedback inhibition: The end

product of the anabolic pathway inhibits the enzyme that catalyzes an early
step of the pathway.
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The cell also controls its catabolism. If the cell is working hard and its ATP
concentration begins to drop, respiration speeds up. When there is plenty of ATP
to meet demand, respiration slows down, sparing valuable organic molecules for
other functions.
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Control is based mainly on regulating the activity of enzymes at strategic
points in the catabolic pathway.
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As shown in the following figure, one important switch is

phosphofructokinase, the enzyme that catalyzes step 3 of glycolysis.
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That is the first step that commits the substrate irreversibly to the glycolytic
pathway. By controlling the rate of this step, the cell can speed up or slow

down the entire catabolic process.
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Phosphofructokinase can thus be considered the pacemaker of respiration.
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