

Cellular Respiration and Fermentation

10

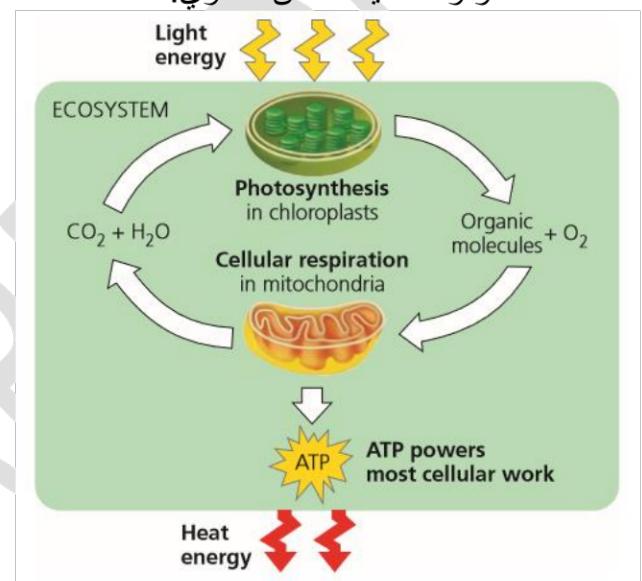
KEY CONCEPTS

- 10.1** Catabolic pathways yield energy by oxidizing organic fuels
- 10.2** Glycolysis harvests chemical energy by oxidizing glucose to pyruvate
- 10.3** After pyruvate is oxidized, the citric acid cycle completes the energy-yielding oxidation of organic molecules
- 10.4** During oxidative phosphorylation, chemiosmosis couples electron transport to ATP synthesis
- 10.5** Fermentation and anaerobic respiration enable cells to produce ATP without the use of oxygen
- 10.6** Glycolysis and the citric acid cycle connect to many other metabolic pathways

- The energy stored in the organic molecules of food ultimately comes from the sun.

مصدر الطاقة المخزنة في المركبات العضوية الشمس.

- Photosynthesis generates oxygen, as well as organic molecules used by the mitochondria of eukaryotes as fuel for cellular respiration.


تنتج عملية البناء الضوئي الأوكسجين بالإضافة إلى مركبات عضوية (غلوکوز) تستخدمها الميتوکندریا كوقود لعملية التنفس الخلوي.

- Respiration breaks this fuel down, using oxygen and generating ATP.

عملية التنفس الخلوي تكسر هذه المركبات مستخدمة الأوكسجين لانتاج طاقة (جزيئات ATP).

- The waste products of this type of respiration, carbon dioxide and water, are the raw materials for photosynthesis.

النفايات الناتجة من عملية التنفس الخلوي (ثاني أكسيد الكربون والماء) تستخدم كمواد خام لعملية البناء الضوئي.

➤ Concept 10.1: Catabolic pathways yield energy by oxidizing organic fuels

- Catabolic pathways: Metabolic pathways that release stored energy by breaking down complex molecules.

عمليات الهضم: أحد عمليات الأيض التي تطلق الطاقة المخزنة في المركبات المعقّدة.

- Transfer of electrons from fuel molecules (like glucose) to other molecules plays a major role in these pathways.

إن أهم خطوة في حدوث هذه العمليات هي نقل الالكترونات من المركبات العضوية (مثل الغلوکوز) إلى جزيئات أخرى.

- Organic compounds possess potential energy as a result of the arrangement of electrons in the bonds between their atoms. Compounds that can participate in exergonic reactions can act as fuels.

تمتلك المركبات العضوية طاقة وضع ناتجة من ترتيب الالكترونات في الروابط بين ذراتها. يمكن ان تستخدم المركبات العضوية التي تشارك في التفاعلات الطاردة للطاقة كوقود.

- How do catabolic pathways produce ATP?

كيف تنتج عمليات الهدم الطاقة؟

- ✓ Through the activity of enzymes, a cell systematically degrades complex organic molecules that are rich in potential energy to simpler waste products that have less energy. Some of the energy taken out of chemical storage can be used to do work; the rest is dissipated as heat.

من خلال نشاط الإنزيمات ، تعمل الخلية على تكسير المركبات العضوية المعقدة بالطاقة إلى مركبات أصغر حجما وذات طاقة أقل، حيث أن بعض هذه الطاقة تخزن على شكل طاقة كيميائية (جزيئات ATP) لأداء وظائف الخلية بينما يتم التخلص من المتبقى على شكل حرارة.

- Examples for catabolic pathways:

- A) Fermentation: Partial degradation of sugars or other organic fuel that occurs without the use of oxygen.

التخمر: عملية تحطيم جزئي للسكريات والمركبات العضوية الأخرى تحدث دون استخدام الأكسجين.

- B) Aerobic respiration: it's the most effective catabolic pathway in which oxygen is consumed as a reactant along with the organic fuel.

التنفس الهوائي: وهي أكثر عمليات الهدم فعالية والتي يتم فيها استخدام الأكسجين كأحد المواد المتفاعلة مع المواد العضوية.

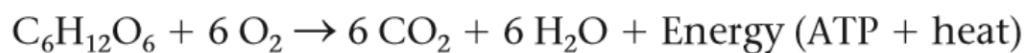
- ✓ The cells of most eukaryotic and many prokaryotic organisms can carry out aerobic respiration.

معظم الخلايا حقيقة النواة والكثير من الخلايا بدائية النواة يمكنها القيام بعملية التنفس الهوائي.


- C) Anaerobic respiration: similar to aerobic but the organism use substances other than oxygen as reactants.

التنفس اللاهوائي: عملية مشابهة للتنفس الهوائي لكن يتم فيها استخدام مواد أخرى غير الأكسجين كمواد متفاعلة.

- Technically, the term cellular respiration includes both aerobic and anaerobic processes. However, it originated as a synonym for aerobic respiration because of the relationship of that process to organismal respiration, in which an animal breathes in oxygen.


بالرغم من أن مصطلح التنفس الخلوي يتضمن عمليات هوائية ولا هوائية لكنه يستخدم أكثر ليدل على التنفس الهوائي لتوضيح التنفس في الكائنات الحية حيث أنها تنفس الأكسجين.

- The overall process of cellular respiration is as following:

- Carbohydrates, fats, and protein molecules from food can all be processed and consumed as fuel. In animal diets, a major source of carbohydrates is starch, a storage polysaccharide that can be broken down into glucose ($C_6H_{12}O_6$) subunits.

يمكن استخدام كل من الكربوهيدرات، الدهون والبروتينات كمصدر للطاقة. في الحيوانات، المصدر الأساسي للكربوهيدرات في الغذاء هو (النشا) وهو سكر متعدد يمكن تكسيره إلى وحدات من الغلوكوز.

- This breakdown of glucose is exergonic, having a free-energy change of -686 kcal (2,870 kJ) per mole of glucose decomposed ($\Delta G = -686 \text{ kcal/mol}$).

عملية تكسير جزيء الغلوكوز هي عملية طاردة للطاقة، تنتج مقدار من الطاقة قدره 686 كيلو كالوري لكل مول غلوكوز.

- ✓ Recall that a negative ΔG ($\Delta G < 0$) indicates that the products of the chemical process store less energy than the reactants and that the reaction can happen spontaneously—in other words, without an input of energy.

بما أن فرق الطاقة الحرية للتفاعل سالب، إذاً طاقة النواتج أقل من طاقة المتفاعلات مما يدل على أن هذا التفاعل يحدث بصورة تلقائية أي دون الحاجة لمصدر طاقة خارجي.

- Catabolic pathways do not directly move flagella, pump solutes across membranes, polymerize monomers, or perform other cellular work. Catabolism is linked to work by a chemical drive shaft (ATP). To keep working, the cell must regenerate its supply of ATP from ADP and $\sim P$.

عمليات الهدم لا تستطيع أن تؤدي الوظائف الخلوية بنفسها أي أنها لا تحرك الأسواط ولا تستطيع ضخ الأيونات عبر الأغشية أو تكوين البولимерات بل إنها تعمل على تصنيع الـ ATP من خلال إضافة مجموعة فوسفات إلى الـ ADP لأداء هذه الوظائف.

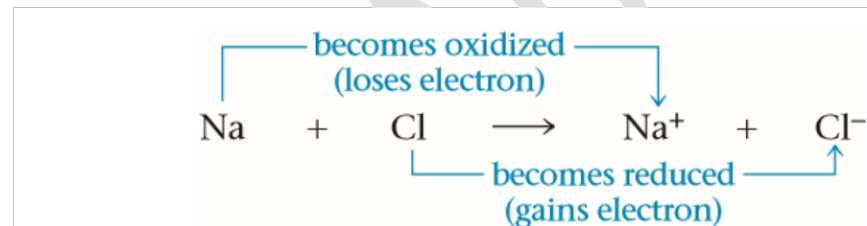
- Cellular respiration is a combination of oxidation and reduction reactions.

• Redox Reactions: Oxidation and Reduction

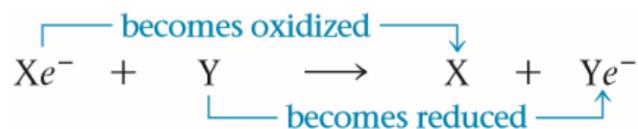
- Oxidation-Reduction reaction: reaction involved a transfer of one or more electrons (e) from one reactant to another

تفاعلات التأكسد والاختزال: تفاعلات تتضمن انتقال الكترون واحد أو أكثر من مادة متفاعلة إلى أخرى.

- ✓ Oxidation: the loss of electrons from one substance


التأكسد: عملية فقدان الكترونات من المادة.

- ✓ Reduction: the addition of electrons to another substance


الاختزال: عملية إضافة الكترونات لمادة أخرى.

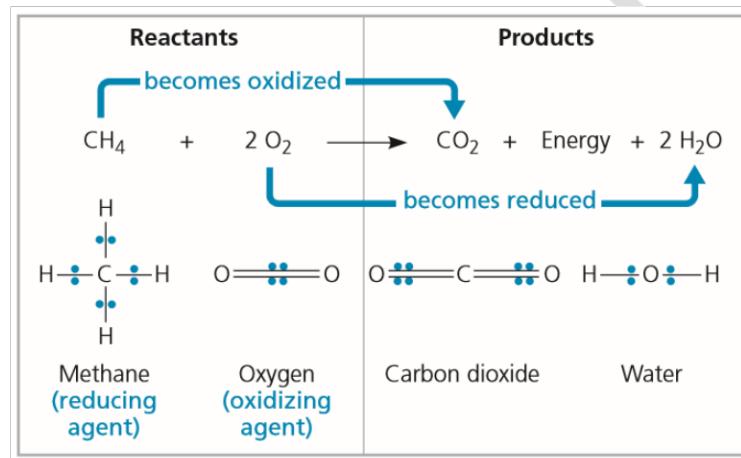
- ✓ In reduction, adding negatively charged electrons to an atom reduces the amount of positive charge of that atom. In oxidation, the opposite happens.

في عملية الاختزال، تقل الشحنة الموجبة للذرة نتيجة لكتسب الالكترونات (تصبح أكثر سالبية). في عملية التأكسد، تزداد الشحنة الموجبة للذرة نتيجة لفقدان الالكترونات (تصبح أقل سالبية).

We could generalize a redox reaction this way:

- ✓ Reducing agent: the substance that has been oxidized (electron donor),

العامل المخترل: المادة التي تأكسدت (المانحة لالكترون) ، حيث سميت بهذا الاسم لأنها تسبب اختزال المادة الأخرى.


- ✓ Oxidizing agent: the substance that has been reduced (electron acceptor), it's named “oxidizing agent” because it oxidizes the other substance.

العامل المؤكسد: المادة التي اخترلت (المكتسبة لالكترونات) حيث سميت بهذا الاسم لأنها تسبب تأكسد المادة الأخرى.

- Because an electron transfer requires both an electron donor and an acceptor, oxidation and reduction always go hand in hand.
- Not all redox reactions involve the complete transfer of electrons from one substance to another; some change the degree of electron sharing in covalent bonds.

لا تتضمن جميع تفاعلات التأكسد والاختزال انتقال كلي لالكترونات من أحد المواد إلى الأخرى، حيث أن بعض الجزيئات فقط تغير درجة مشاركة الالكترونات.

∞ For example: Methane Combustion:

- ✓ The covalent electrons in methane are shared nearly equally between the bonded atoms because carbon and hydrogen have about the same affinity for valence electrons; they are about equally electronegative.

الكترونات الروابط التساهمية في مركب الميثان متشاركة بالتساوي بين الكربون والهيدروجين لأن لهم نفس الكهروسلبية (نفس الألفة تجاه التكترونات الرابطة).

- ✓ The two atoms of the oxygen molecule (O_2) share their electrons equally.
- ذرت الأكسجين تشارك الالكترونات بصورة متساوية.
- ✓ When methane reacts with oxygen, forming carbon dioxide, electrons end up shared less equally between the carbon atom and its new covalent partners, the oxygen atoms, which are very electronegative. The electrons of the covalent bonds spend more time near the oxygen.

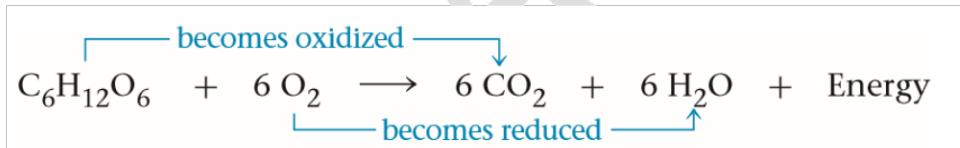
عندما يتفاعل الكربون مع الأكسجين لتكوين ثاني أكسيد الكربون، تصبح الالكترونات متشاركة بصورة غير متساوية بين الأكسجين والكربون وذلك لأن الأكسجين له كهروسلبية أعلى من الكربون. إذ تقضي الكترونات الرابطة التساهمية وقت أطول بالقرب من الأكسجين.

- ✓ In effect, the carbon atom has partially “lost” its shared electrons; thus, methane has been oxidized and each oxygen atom has partially “gained” electrons, so the oxygen molecule has been reduced.

تفقد ذرة الكربون إلكتروناتها بصورة جزئية أي أن الميثان يتأكسد في حين أن الأكسجين يكسب الإلكترونات بصورة جزئية أي يختزل.

- Energy must be added to pull an electron away from an atom.

يلزم طاقة لسحب الالكترونات من الذرات.


- The more electronegative the atom (the stronger its pull on electrons), the more energy is required to take an electron away from it.

كلما زادت كهرولسليبة الذرة كلما طلب مقدار طاقة أكبر لسحب الالكترونات منها.

- An electron loses potential energy when it shifts from a less electronegative atom toward a more electronegative one.

يفقد الاكترون طاقة ووضع عندما ينتقل من ذرة إلى ذرة أخرى لها كهروسلبية أعلى.

- **Oxidation of Organic Fuel Molecules during Cellular Respiration**

- ✓ Hydrogen is transferred from glucose to oxygen.

يتنتقل الهيدروجين من جزء الغلوكوز إلى الأكسجين.

- ✓ The energy state of the electron changes as hydrogen (with its electron) is transferred to oxygen.

طاقة الكترون ذرة الهيدروجين تتغير عندما تنتقل إلى الأكسجين.

- ✓ Organic molecules that have an abundance of hydrogen are excellent fuels because their bonds are a source of electrons.

المواد العضوية الغنية بالهيدروجين تعتبر من أفضل الجزيئات التي يمكن استخدامها كوقود للخلايا وذلك لأن روابطها غنية بالاكترونات

- ✓ In respiration, the oxidation of glucose transfers electrons to a lower energy state, liberating energy that becomes available for ATP synthesis.

في عملية التنفس الخلوي، أكسدة الغلوكوز تفقد الالكترونات طاقة، هذه الطاقة تتحرر لصنع جزيئات ATP.

- ✓ In general, fuels with multiple C—H bonds oxidized into products with multiple C—O bonds.

بشكل عام، الروابط H - C في المواد العضوية المتفاعلة يتم أكسدتها إلى روابط C-O في النواتج.

- Cellular respiration occurs in a series of steps.

لا تحدث عملية التنفس الخلوي بخطوة واحدة وإنما عبر سلسلة من الخطوات.

- **Stepwise Energy Harvest via NAD⁺ and the Electron Transport Chain**

●

- If energy is released from a fuel all at once, it cannot be harnessed efficiently for constructive work.

إذا قمنا بتحرير الطاقة المخزنة في الجزيئات العضوية المستخدمة كوقود مرة واحدة لن نستطيع استخدامها بفعالية للوظائف الخلوية.

- Cellular respiration does not oxidize glucose (or any other organic fuel) in a single explosive step either. Rather, glucose is broken down in a series of steps, each one catalyzed by an enzyme.

لا تقوم عملية التنفس الخلوي بأكسدة الغلوكوز (أو أي وقود عضوي) من خلال خطوة واحد أشبه بالانفجار.
بل يتم تكسير الغلوكوز عبر سلسلة من الخطوات بحيث يحفز إنزيم معين كل منها.

- Electrons are stripped from the glucose. Each electron travels with a proton—(proton + electron = a hydrogen atom).

يتم انتزاع الالكترونات من جزيء الغلوكوز. تنتقل الالكترونات برفقة بروتون أي ذرة هيدروجين
(بروتون + الكترون = ذرة هيدروجين).

- The hydrogen atoms are not transferred directly to oxygen, but instead are usually passed first to an electron carrier, a coenzyme called nicotinamide adenine dinucleotide, a derivative of the vitamin niacin.

لا تنتقل ذرات الهيدروجين مباشرة للأكسجين، بل انها تنتقل لحامل الكترونات الكترونات وهو إنزيم مساعد يسمى NAD⁺ مشتق من الفيتامين النياسين.

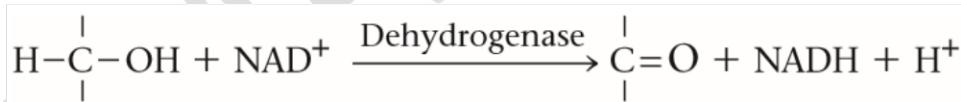
- This coenzyme is well suited as an electron carrier because it can cycle easily between its oxidized form, NAD⁺, and its reduced form, NADH.

يعتبر NAD^+ إنزيم مساعد ملائم كحامل الكترونات وذلك بسبب قدرته على التحول بين الشكل المتأكسد والشكل المختزل NADH بكل سهولة.

- As an electron acceptor, NAD^+ functions as an oxidizing agent during respiration.

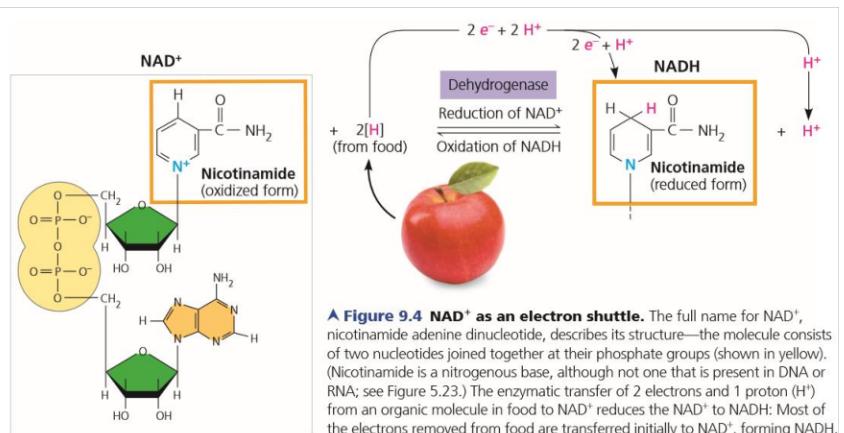
يعمل ال NAD^+ خلال عملية التنفس الخلوي كعامل مؤكسد فهو مستقبل للاكترونات.

- How does NAD^+ trap electrons from glucose and the other organic molecules in food?


كيف تنتقل الاكترونات من المادة العضوية إلى الإنزيم المساعد NAD^+ ؟

- ✓ Enzymes called dehydrogenases remove a pair of hydrogen atoms (2 electrons and 2 protons) from the substrate, thereby oxidizing it.

يعمل إنزيم يسمى Dehydrogenase على إزالة ذرتين هيدروجين من المادة العضوية (الكترونين وبروتونين) مما يؤدي إلى أكسستها.


- ✓ The enzyme delivers the 2 electrons along with 1 proton to its coenzyme, NAD^+ , forming NADH . The other proton is released as a hydrogen ion (H^+) into the surrounding solution.

يعمل هذا الإنزيم على نقل الكترونين وبروتون واحد فقط إلى الإنزيم المساعد NAD^+ ، مكوناً NADH . في حين أن البروتون الثاني يطلق إلى محلول المحيط.

- ✓ By receiving 2 negatively charged electrons but only 1 positively charged proton, the nicotinamide portion of NAD^+ has its charge neutralized when NAD^+ is reduced to NADH .

عندما يستقبل ال NAD^+ الكترونين وبروتون واحد فقط ، تتعادل شحنته الكلية ويخترز إلى NADH .

- Electrons lose very little of their potential energy when they are transferred from glucose to NAD⁺.

تفقد الاكترونات جزء قليل من طاقتها عندما تنتقل من الغلوكوز الى NAD⁺.

- Each NADH molecule formed during respiration represents stored energy.

يمثل كل جزء NADH متكون خلال عملية التنفس الخلوي طاقة مخزنة.

- This energy can be tapped to make ATP when the electrons complete their “fall” in a series of steps down an energy gradient from NADH to oxygen.

يمكن استخراج هذه الطاقة لصنع جزيئات ATP عندما تنتقل الاكترونات تدريجياً بخطوات متسلسلة من ال NADH الى الاكسجين.

- How does the transfer of electrons occur?
- Instead of occurring in one explosive reaction, respiration uses an electron transport chain to break the fall of electrons to oxygen into several energy-releasing steps.

اذا حدث انتقال الاكترونات مرة واحدة، سيكون ذلك اشبه بحدوث انفجار لذلك تستخدم عملية التنفس الخلوي سلسلة نقل الاكترون لنقل الاكترونات للاكسجين بعدة خطوات متسلسلة منتجة للطاقة.

- An electron transport chain consists of a number of molecules, mostly proteins, built into the inner membrane of the mitochondria of eukaryotic cells (and the plasma membrane of respiring prokaryotes).

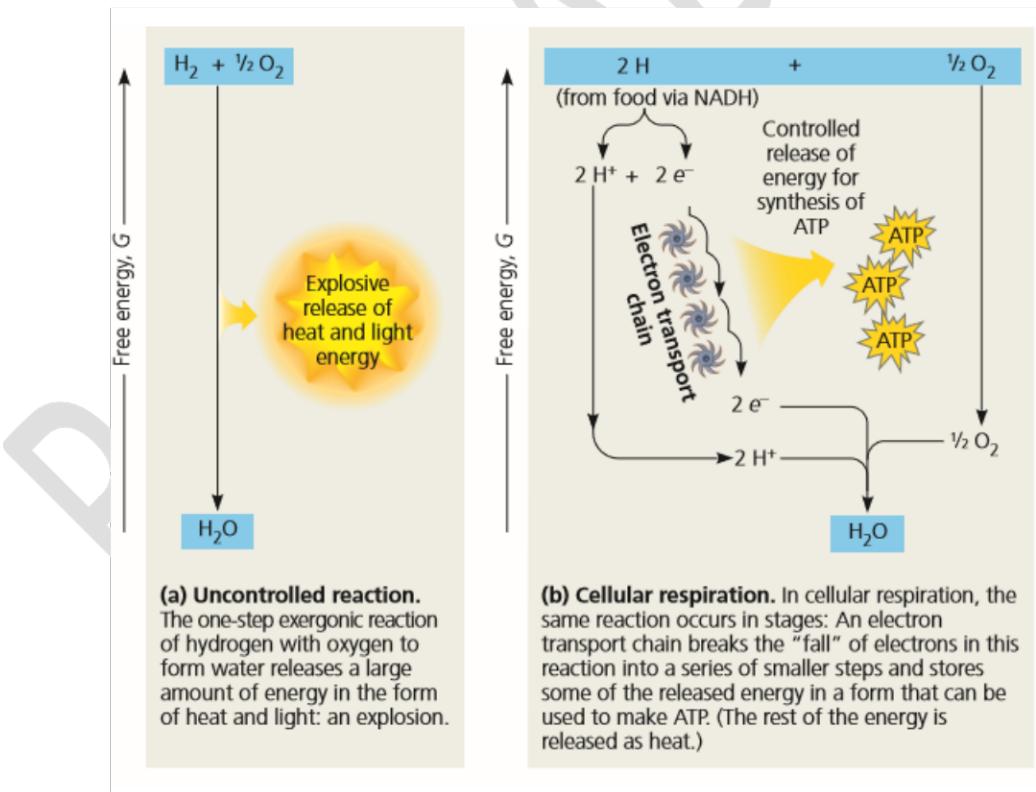
تتكون سلسلة نقل الاكترون من عدد من الجزيئات معظمها بروتينات، موجودة في الغشاء الداخلي للميتوكندريا في الخلايا حقيقة النواة. في الخلايا بدائية النواة، توجد هذه السلسلة في الغشاء البلازمي.

- Electrons removed from glucose are shuttled by NADH to the “top,” higher-energy end of the chain. At the “bottom,” lower-energy end, O₂ captures these electrons along with hydrogen nuclei (H⁺), forming water.

تنزع الاكترونات من الغلوكوز لتنقل ل NADH، والذي يتواجد أعلى السلسلة (طاقة عالية). في أسفل السلسلة، (طاقة قليلة) يتواجد جزء NADH الاكسجين والذي يستقبل بالنهاية هذه الاكترونات برفقة البروتونات ليكون الماء.

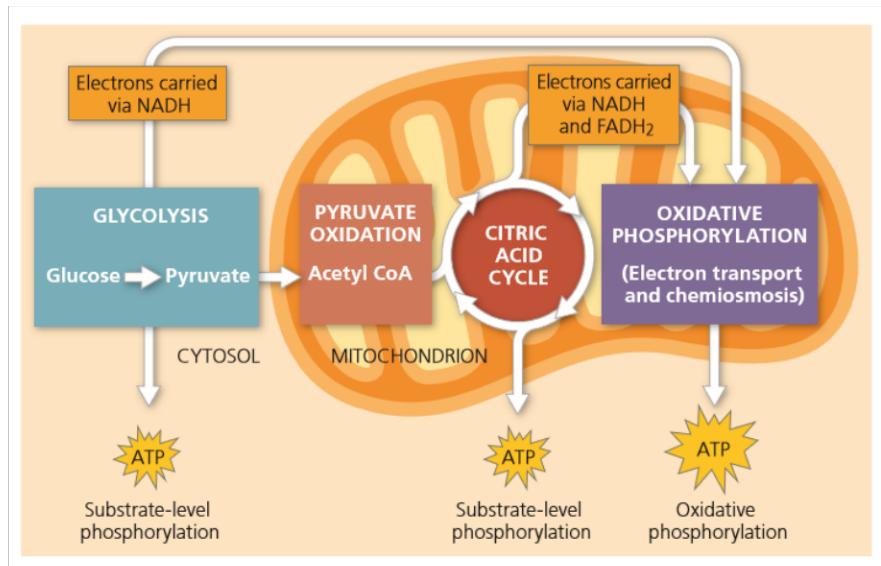
- Anaerobically respiring prokaryotes have an electron acceptor at the end of the chain that is different from O₂.

في عملية التنفس اللاهوائي، يوجد في نهاية السلسلة مستقبل الكترونات غير الاكسجين.


- ✓ Electron transfer from NADH to oxygen is an exergonic reaction with a free-energy change of -53 kcal/mol (-222 kJ/mol).

تعد عملية نقل الالكترون من ال NADH -إلى الأكسجين عملية طاردة للطاقة حيث يكون قيمة فرق الطاقة الحرية فيها -53 كيلوجول.

⇨ Pathway of electrons: Glucose \rightarrow NADH \rightarrow Electron transport chain \rightarrow Oxygen.


- ✓ Instead of this energy being released and wasted in a single explosive step, electrons cascade down the chain from one carrier molecule to the next in a series of redox reactions, losing a small amount of energy with each step until they finally reach oxygen, the terminal electron acceptor, which has a very great affinity for electrons.

بدلاً من استخلاص الطاقة المخزنة في الجزيئات العضوية بخطوة واحد تؤدي إلى ضياع هذه الطاقة وعدم الاستفادة منها ، تمر الالكترونات بعد استخلاصها من المركبات العضوية عبر مجموعة من الجزيئات حيث تفقد جزء قليل من طاقتها أثناء هذا الانتقال حتى تصل في النهاية إلى الأكسجين (المستقبل النهائي للالكترونات) والذي يمتلك أفة عالية تجاه الالكترونات.

• The Stages of Cellular Respiration: A Review

- 1) Glycolysis.
- 2) Oxidation of pyruvate and citric acid cycle.
- 3) Oxidative phosphorylation = Electron transport chain + Chemiosmosis.

A) Glycolysis:

- Occurs in the cytosol.

تحت العملية في السيتوسول.

- Glycolysis breaks glucose into two molecules of a compound called pyruvate.
تعمل على تكسير الغلوكوز إلى جزيئين بيروفيت.
- Glycolysis generates ATP by substrate level phosphorylation + NADH.
تقوم هذه العملية بانتاج ATP عن طريق substrate-level phosphorylation بالإضافة إلى NADH.

B) Oxidation of pyruvate

- In eukaryotes, pyruvate produced from glycolysis enters the mitochondria and oxidized to a compound called acetyl CoA.

في الكائنات حقيقية النوى ، يدخل البيروفيت الناتج من مرحلة التحلل السكري إلى الميتوكوندريا ثم يتأكسد لإنتاج مركب يسمى Acetyl coA.

- No production of ATP or NADPH.

لا تنتج من هذه المرحلة جزيئات ATP أو NADH.

C) Citric Acid cycle "Krebs cycle / Tricarboxylic acid cycle"

- Acetyl CoA enters to this cycle and in it the breakdown of glucose to CO₂ is completed.

يدخل مركب Acetyl co-A إلى حلقة كربس ثم يتحطم إلى ثاني أكسيد الكربون.

- Occurs in mitochondria in eukaryotes and in the Cytosol in prokaryotes

تحدث هذه العملية في الميتوكندريا في الخلايا الحقيقية بينما في الساينتوسول في الخلايا البدانية.

- Produces ATP by substrate level phosphorylation and produces NADH-FADH₂.

تقوم هذه العملية بانتاج ATP عن طريق substrate-level phosphorylation بالإضافة إلى NADH و FADH₂.

D) Oxidative phosphorylation:

- Oxidative phosphorylation: Electron transport chain + Chemiosmosis.

تتضمن الفسفرة التأكسدية : كل من سلسلة نقل الالكترونات + الأسموزية الكيميائية.

- Occurs in the inner membrane of mitochondria.

تحدث في الغشاء الداخلي للميتوكندريا.

- The electron transport chain accepts electrons from NADH or FADH₂ and passes these electrons down the chain. At the end of the chain, the electrons are combined with molecular oxygen and hydrogen ions (H⁺), forming water.

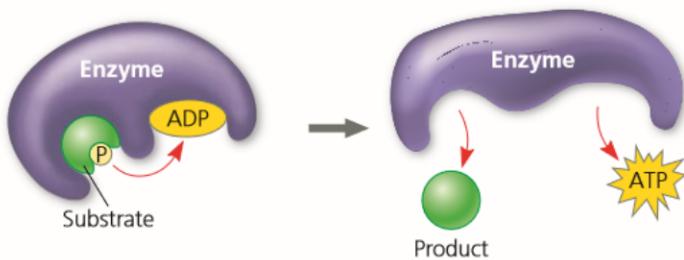
يتم إعطاء الالكترونات التي تحملها جزيئات NADH - FADH₂ إلى سلسلة نقل الالكترونات حيث تمر بين بروتيناتها حتى تصل في النهاية إلى الأكسجين الذي يستخدمها لتصنيع الماء .

- The energy released at each step of the chain is stored in a form the mitochondrion can use to make ATP from ADP.

أثناء نقل الالكترونات تخزن الطاقة التي تنتج من كل انتقال داخل الميتوكندريا لاستخدامها في تصنيع جزيئات الـ ATP عن طريق إضافة مجموعة فوسفات إلى ADP .

- ✓ Oxidative phosphorylation accounts for almost 90% of the ATP generated by respiration.

تساهم الفسفرة التأكسدية في انتاج 90% من جزيئات الـ ATP التي تتشكل بفعل التنفس الخلوي.


- ✓ This mode of ATP synthesis is called oxidative phosphorylation because it is powered by the redox reactions of the electron transport chain.

سميت هذه المرحلة بالفسفة التأكسدية لأن مصدر الطاقة فيها هي تفاعلات التأكسد والاختزال في سلسلة نقل الالكترونات.

- Substrate-level phosphorylation:
- ✓ Occurs when an enzyme transfers a phosphate group from a substrate molecule to ADP, rather than adding an inorganic phosphate to ADP as in oxidative phosphorylation.

تحدث هذه العملية عندما يقوم إنزيم بنقل مجموعة فوسفات من أحد المواد إلى جزيء ADP لتكوين ATP ، بدلاً من أن يكون مصدر مجموعة الفوسفات غير عضوي مثل الذي يحدث أثناء الفسفرة التأكسدية.

▼ **Figure 9.7 Substrate-level phosphorylation.** Some ATP is made by direct transfer of a phosphate group from an organic substrate to ADP by an enzyme. (For examples in glycolysis, see Figure 9.9, steps 7 and 10.)

- For each molecule of glucose degraded to carbon dioxide and water by respiration, the cell makes up to about 32 molecules of ATP, each with 7.3 kcal/mol of free energy.

ينتج عن تحطيم كل جزيء غلوكوز إلى ثاني أكسد لакربون والماء 32 جزيء ATP. كل جزيء يمتلك كمية من الطاقة مقدارها 7.3 كيلوكلوري لكل مول.

➤ *Concept 10.2: Glycolysis harvests chemical energy by oxidizing glucose to pyruvate*

- Glycolysis is the process of splitting sugar. Glucose, a six-carbon sugar, is split into two three-carbon sugars which are oxidized and their remaining atoms rearranged to form two molecules of pyruvate.

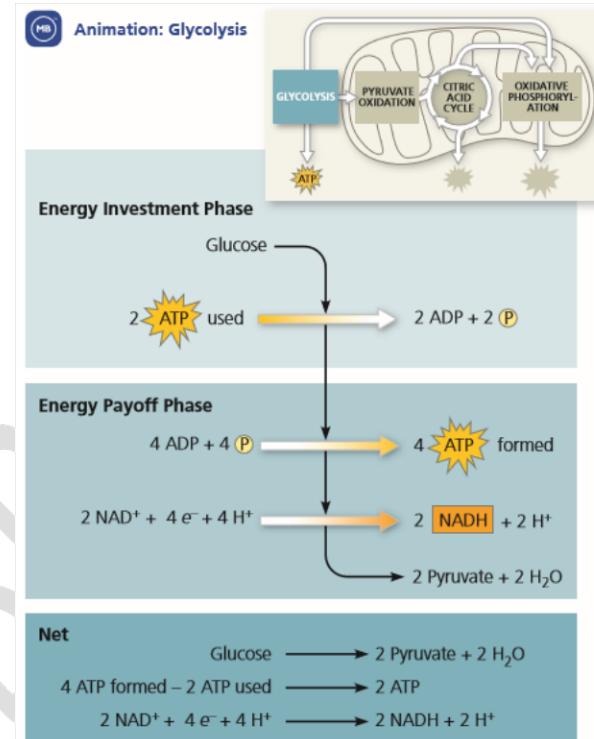
تمثل عملية التحلل السكري عملية فصل للسكر ، حيث ينفصل سكر الغلوكوز المكون من 6 كربونات إلى سكريين يتكون كل منهما من ثلاثة ذرات كربون بحيث تتأكسد هذه السكريات ويعاد ترتيب الذرات المتبقية منها لتشكل البيروفيت.

- All of the carbon originally present in glucose is accounted for in the two molecules of pyruvate; no carbon is released as CO₂ during glycolysis

جميع كربونات سكر الغلوكوز دخلت في تركيب جزيئين البيروفيت وبالتالي فإن هذه العملية لا تطلق الكربون على شكل ثاني أكسيد الكربون.

- Pyruvate is the ionized form of pyruvic acid.

يمثل البيروفيت الشكل المتأين لحمض البيروفيك.

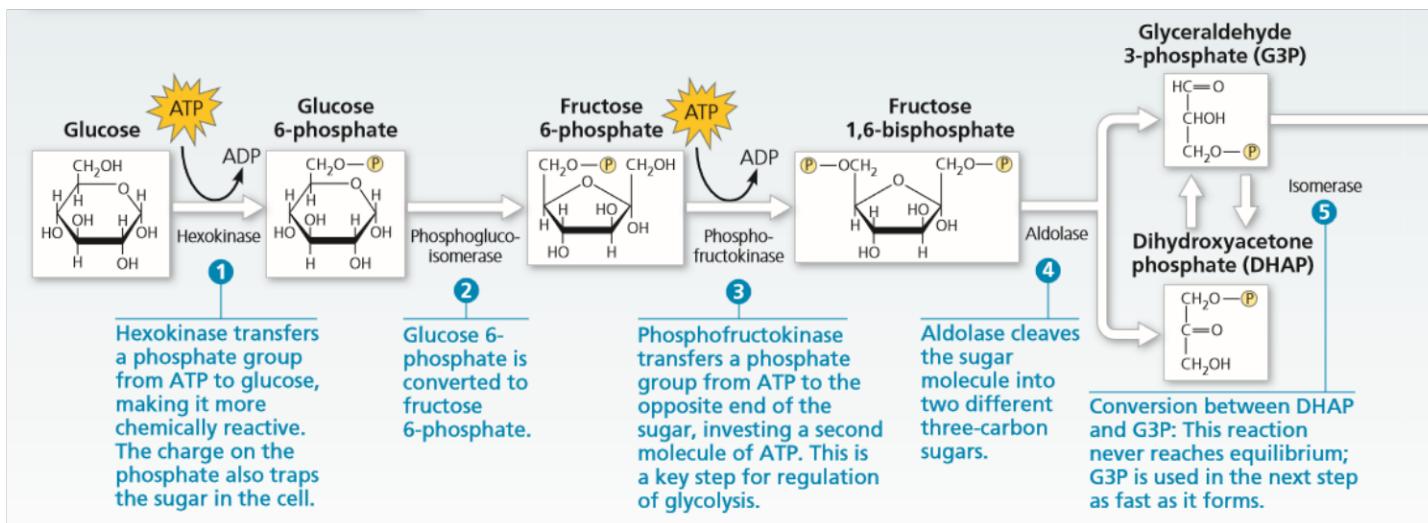

- Glycolysis can be divided into two phases:

1. The energy investment phase: the cell spends 2 ATP molecules.

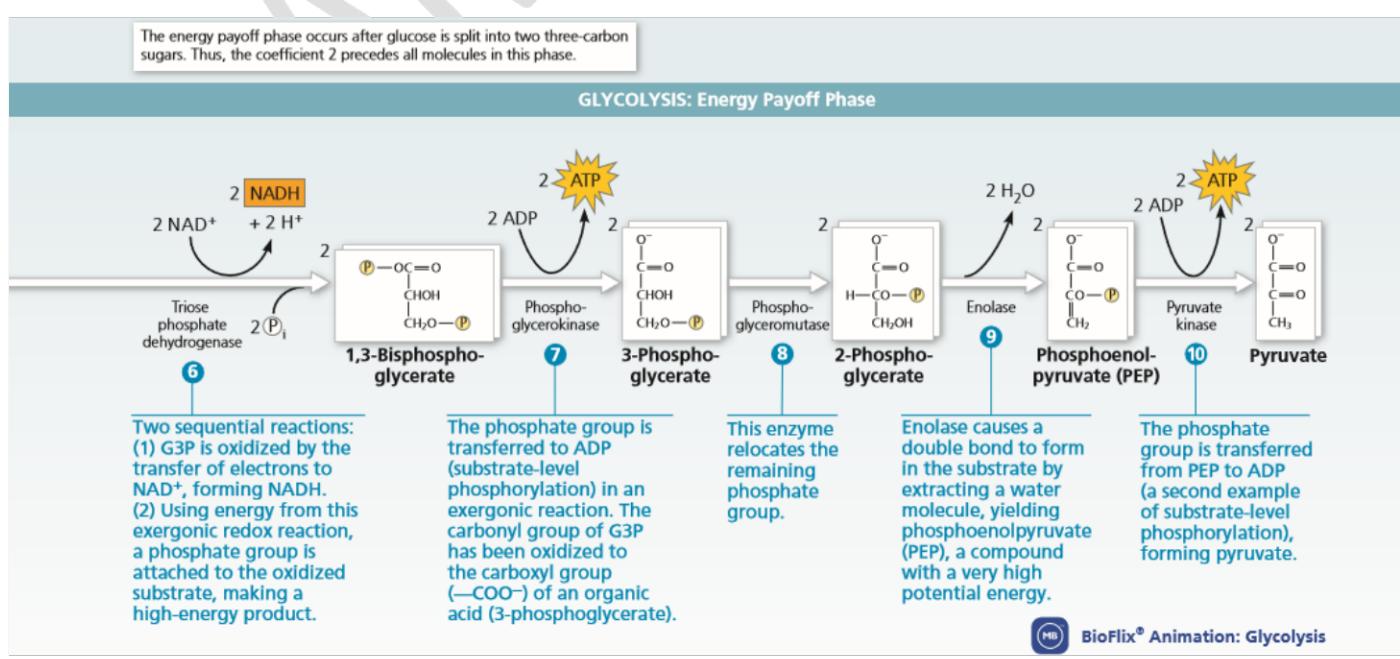
مرحلة استهلاك الطاقة: تستهلك الخلية جزيئين ATP.

2. The energy payoff phase: The cell produces 4 ATP - 2 NADH - 2 H₂O - 2 pyruvate.

مرحلة ارجاع الطاقة: تنتج الخلية 4 جزيئات ATP جزيئين NADH جزيئين ماء و جزيئين بيروفيت.


- ✓ The net energy yield from glycolysis, per glucose molecule, is 2 ATP plus 2 NADH, the cell produces 4 ATP and spends 2 ATP --> 4-2= 2ATP.
- Glycolysis occurs whether or not O₂ is present. However, if O₂ is present, the chemical energy stored in pyruvate and NADH can be extracted by pyruvate oxidation, the citric acid cycle, and oxidative phosphorylation.

تحدث عملية التحلل السكري سواء بوجود الأكسجين أو دون وجوده، في حال وجود الأكسجين يمكن استخلاص الطاقة الكيميائية المخزنة في البيروفيت وجزيئات NADH من خلال مراحل : أكسدة البيروفيت ، حلقة كربس ، الفسفرة التأكسدية.


- Glycolysis occurs in 10 steps.

- A) Energy investment phase: it occurs in 5 steps; each step has its own enzyme.

تحدث عملية استهلاك الطاقة في 5 خطوات، لكل خطوة إنزيم خاص بها.

B) Energy payoff phase: it occurs in 5 steps; each has its own enzyme.

6) تتضمن هذه الخطوة حدوث تفاعلين متعاقبين:

أ. يتأكسد سكر G3P عن طريق نقل الكتروناته إلى مركب NAD + (يُنتج جزيئات NADH).

ب. تستخدم الطاقة الناتجة من أكسدة جزيء السكر السابق في إضافة مجموعة فوسفات لسكر المؤكسد نفسه مما يجعله مركب ذو طاقة عالية.

7) أ. تنتقل مجموعة الفوسفات من السكر المؤكسد إلى جزيء ثانوي فوسفات الأدينوسين عبر تفاعل طارد للطاقة (يُنتج ATP).

ب. يتأكسد مجموعة الكربونيل المتصلة بسكر ال G3P إلى مجموعة كربوكسيل فيتحول إلى

3-Phosphoglycerate

8) يقوم الإنزيم بتغيير موقع مجموعة الفوسفات المتصلة بالسكر فيتحول إلى 2-Phosphoglycerate.

9) يقوم الإنزيم بإزالة جزيء ماء مما يؤدي إلى تكوين رابطة ثنائية وإنتاج مركب ذو طاقة عالية.

10) تنتقل مجموعة الفوسفات من مركب ال Phosphoenolpyruvate إلى جزيء ثانوي فوسفات الأدينوسين مما يؤدي إلى تكوين البيروفيت (يُنتج ATP).

- ✓ Kinase: transfers a phosphate group.
- ✓ Isomerase: produces an isomer.
- ✓ Aldolase: cleaves.
- ✓ Dehydrogenase: produces NADH.
- ✓ Mutase: changes position of phosphate group.

➤ *Concept 10.3: After pyruvate is oxidized, the citric acid cycle completes the energy-yielding oxidation of organic molecules*

- When O₂ is present; the pyruvate in eukaryotic cells enters a mitochondrion, where the oxidation of glucose is completed.

عندما يكون الأكسجين متزافرة في الخلايا حقيقة النوى يدخل البيروفيت إلى الميتوکندریا حيث تتم الأكسدة الكلية للغلوکوز فيها.

- In aerobically respiring prokaryotic cells, this process occurs in the cytosol.

في الكائنات بدائية النواة التي تتنفس هوائياً تحدث هذه العملية في السيتوسول.

• **Oxidation of Pyruvate to Acetyl CoA**

- Upon entering the mitochondrion pyruvate is converted to a compound called acetyl coenzyme A, or acetyl CoA.

عند دخوله للميتوكوندريا يتحول البيروفيت إلى مركب يسمى Acetyl CoA.

- Pyruvate is a charged molecule, so in eukaryotic cells it must enter the mitochondrion via active transport, with the help of a transport protein.

يعتبر البيروفيت جزيء مشحون وبالتالي فإنه يدخل إلى خلايا الميتوكوندريا عن طريق النقل النشط وبمساعدة بروتين ناقل.

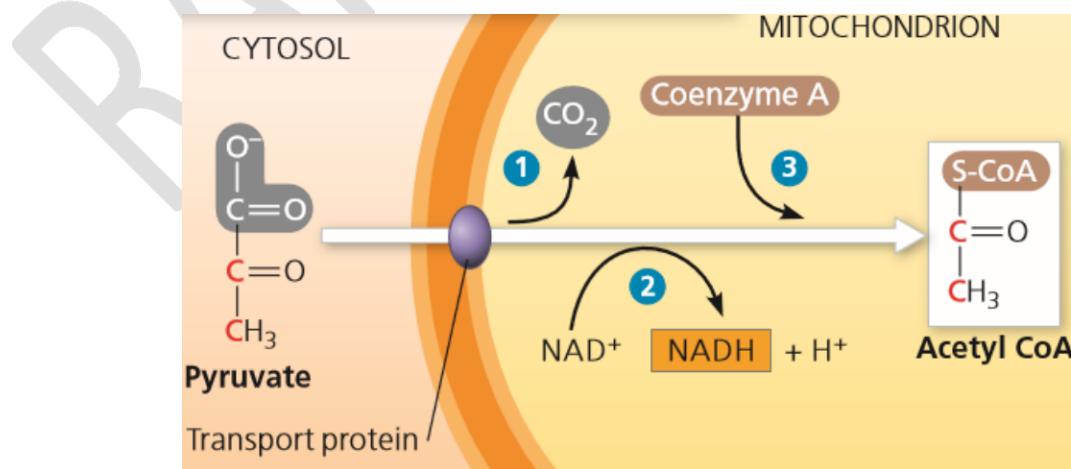
- This step links glycolysis and the citric acid cycle

ترتبط هذه الخطوة بين التحلل السكري وحلقة كرب.

- It is carried out by a multi-enzyme complex (Pyruvate dehydrogenase complex) that catalyzes three reactions:

تحدث هذه المرحلة من خلال مركب متعدد الأنزيمات يسمى Pyruvate dehydrogenase complex حيث تتم من خلال ثلاثة تفاعلات :

1) Pyruvate's carboxyl group-COO is released and given off as a molecule of CO₂.

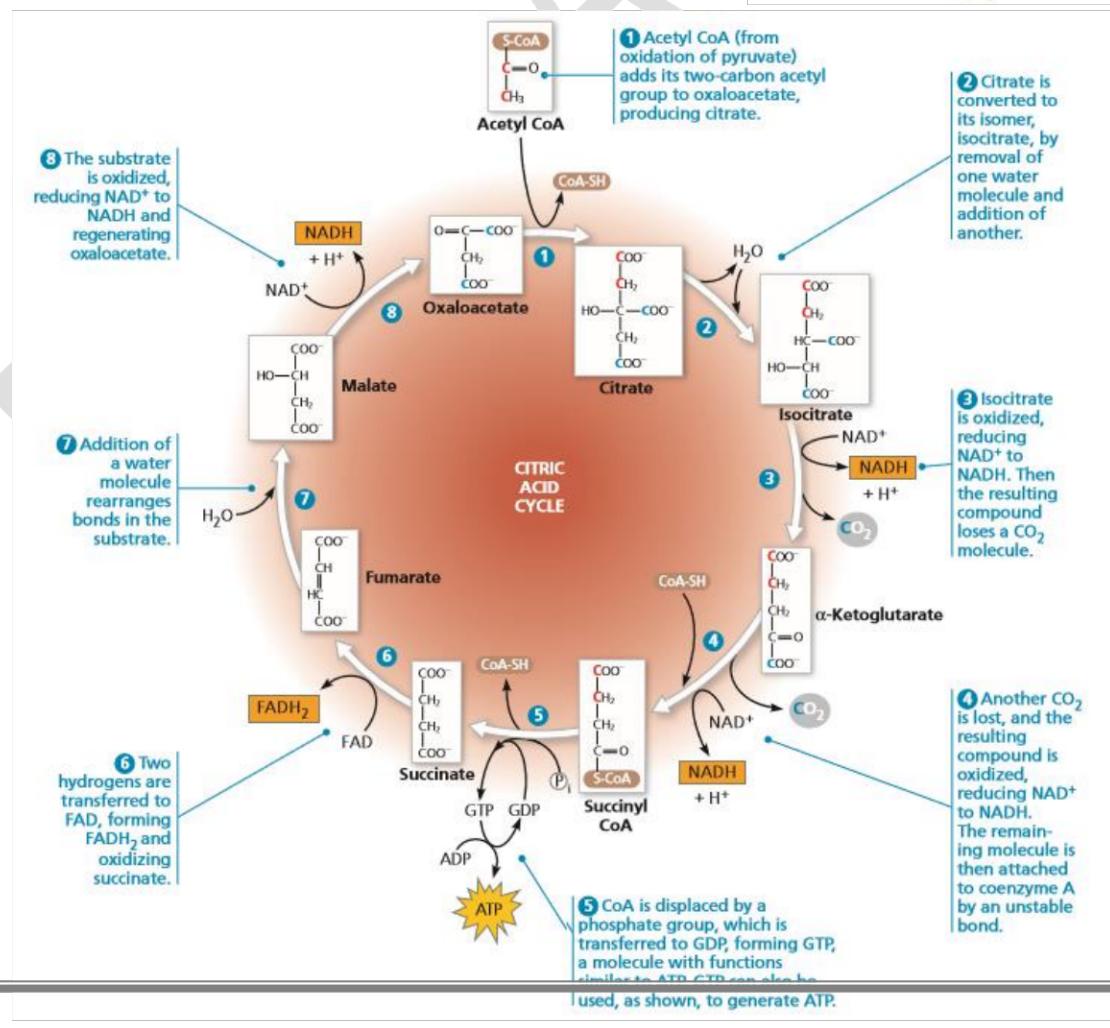
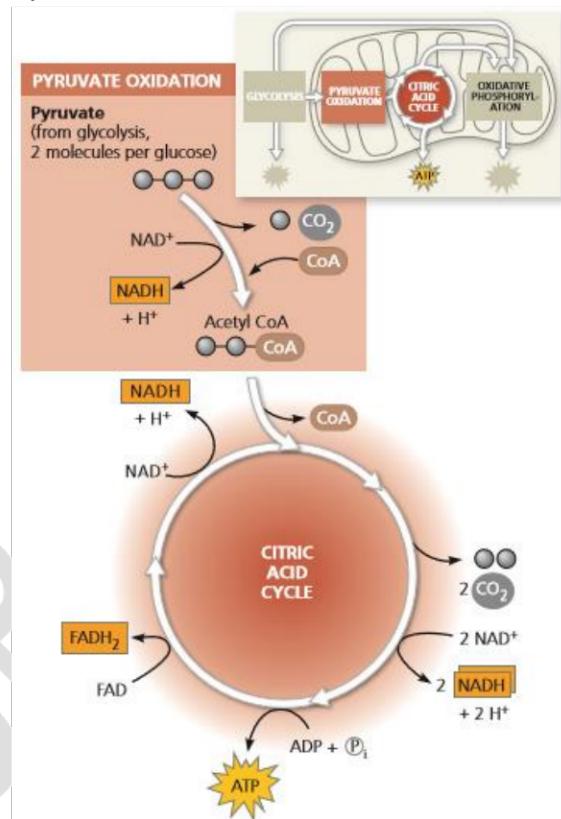

يفقد البيروفيت مجموعة كربوكسيل حيث تغادر على شكل جزيء ثاني أكسيد الكربون.

2) The remaining two-carbon fragments get oxidized and the electrons are transferred to NAD⁺, storing energy in the form of NADH.

يتبقى ذرتين من الكربون ، تتأكسد هذه القطعة الكربونية المتبقية (أي تفقد الكترونات) وتنقل هذه الالكترونات إلى NAD⁺ ليخزن طاقة ويتحول إلى NADH.

3) Coenzyme A (COA), a sulfur-containing compound derived from a B vitamin, is attached via its sulfur atom to the two-carbon intermediate, forming acetyl CoA.

يرتبط مركب يسمى Co-A المشتق من فيتامين B مع الوسيط ذو الكربونتين بواسطة ذرة الكبريت الموجودة فيه ليتشكل مركب Acetyl Co-A.

- Each glucose molecules gives 2 pyruvate \rightarrow 2 Acetyl CoA.

- The Citric Acid Cycle (Krebs cycle – Tricarboxylic acid cycle)**

- Each Acetyl CoA that enters the cycles produces:
 - 1 ATP by substrate level phosphorylation.
 - 3NADH coenzyme.
 - 1 FADH₂ coenzyme.
 - 2 CO₂.
- Each glucose molecules gives 2 pyruvates \rightarrow 2 Acetyl CoA produce:
 - 2 ATP.
 - 6NADH.
 - 2 FADH₂.
 - 4CO₂.

- The citric acid cycle consists of 8 steps:

Used, as shown, to generate ATP.

1. يقوم مركب ال CoA بـ إعطاء ذرتى كربون إلى مركب Oxaloacetate مما يؤدي إلى تكوين مركب Citrate .
2. يتحول ال Citrate إلى نظيره (Isocitrate) عن طريق إزالة جزء جزيء ماء وإضافة جزء آخر.
3. يتأكسد جزء جزيء ال isocitrate ثم يفقد جزء ثانى أكسيد الكربون، تؤدى أكسدته إلى اختزال جزء ال NAD+ إلى NADH .
4. يفقد المركب الناتج جزء آخر من ثانى أكسيد الكربون ثم يتأكسد ، تؤدى أكسدة المركب إلى اختزال جزئيات NADH إلى NAD ، بعد ذلك يتصل المركب الناتج ب Coenzyme A برابطة غير مستقرة.
5. يستبدل CoA بمجموعة فوسفات، ثم تنتقل مجموعة الفوسفات إلى مركب ال GDP ويتتحول إلى GTP . يستخدم المركب لتوليد جزئيات ATP .
6. تنتقل ذرتى هيدروجين من المركب الناتج إلى FAD ليتحول إلى FADH2 ، و يتأكسد مركب ال Succinate .
7. يضاف جزء من الماء إلى المركب الناتج مما يعمل على إعادة ترتيب الروابط فيه.
8. يتأكسد المركب الناتج ليعيد إنتاج مركب ال Oxaloacetate اللازم لبدء الحلقة من جديد، تسبب أكسدة المركب اختزال جزئيات NADH إلى NAD .

- In eukaryotic cells, all the citric acid cycle enzymes are located in the mitochondrial matrix except for the enzyme that catalyzes step 6, which resides in the inner mitochondrial membrane.

في الخلايا الحقيقية النواة ، تتوارد الإنزيمات التي تحفز خطوات حلقة كربس في حشوة الميتوكندريا باستثناء الإنزيمات التي تحفز الخطوة السادسة من الحلقة فإنها تتوارد في الغشاء الداخلي للميتوكندريا.

- FAD (Flavin adenine dinucleotide) is derived from riboflavin, a B vitamin.

➤ *Concept 10.4: During oxidative phosphorylation, chemiosmosis couples electron transport to ATP synthesis*

- Oxidative phosphorylation includes electron transport chain and chemiosmosis.
- Molecules of NADH (and FADH2) account for most of the energy extracted from each glucose molecule.

• The Pathway of Electron Transport

- The electron transport chain is a collection of molecules embedded in the inner membrane of the mitochondrion in eukaryotic cells. In prokaryotes, these molecules reside in the plasma membrane.

سلسلة نقل الالكترون: مجموعة من الجزيئات المثبتة في الغشاء الداخلي للميتوكندريا في الخلايا حقيقية النوى. في الخلايا بدائية النواة تتواجد هذه الجزيئات في الغشاء البلازمي.

- The folding of the inner membrane to form cristae increases its surface area, providing space for thousands of copies of each component of the electron transport chain in a mitochondrion.

تعمل الانحناءات الموجودة في الغشاء الداخلي والتي تسمى أعراف الميتوكندريا على زيادة المساحة السطحية مما يوفر إمكانية وجود آلاف من سلسلة نقل الالكترونات.

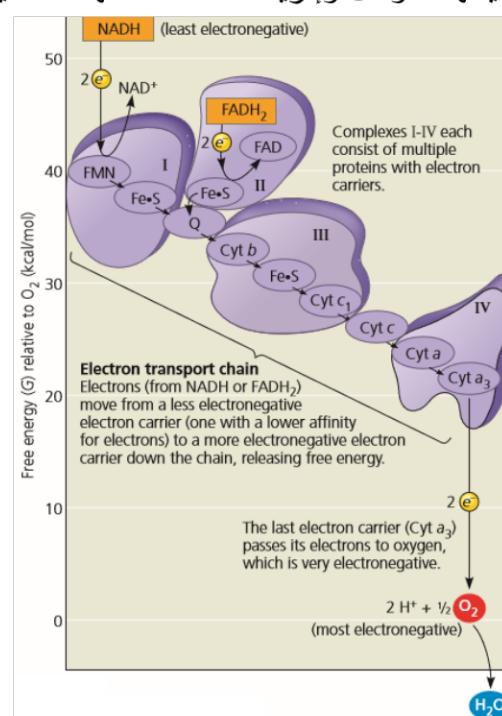
- Most components of the chain are proteins, which exist in multi-protein complexes numbered through IV.

معظم مكونات سلسلة نقل الالكترون عبارة عن بروتينات تتواجد على شكل معقدات عديدة البروتين ، حيث رقم من 1 إلى 4

- Tightly bound to these proteins are prosthetic groups, non-protein components such as cofactors and coenzymes essential for the catalytic functions of certain enzymes

تتصل بهذه البروتينات مجموعات يطلق عليها اسم Prosthetic group وهي مكونات غير بروتينية تؤدي وظيفتها كعوامل وإنزيمات مساعدة مهمة لتحفيز نشاط بعض الإنزيمات.

يتمثل الشكل المجاور سلسلة نقل الالكترون التي تقع في الغشاء الداخلي للميتوكندريا ، لاحظ أنها مكونة من 4 مركبات بروتينية تضم مجموعات عدّة.


يعطي كل جزء NADH الكترونين إلى المركب الأول من السلسلة بينما يعطي FADH_2 إلى المركب الثاني.

أثناء نزول الالكترونات من مكون آخر ضمن هذه السلسلة يتأكسد المركب الذي يفقد الالكترونات، ويختزل المركب الذي يكتسبها.

تنقل الالكترونات من الناقل ذو الكهروسلبية الأقل إلى الناقل ذو الكهروسلبية الأعلى.

آخر ناقل للالكترونات يسمى Cyt a3 يعمل على تمرير الالكترونات إلى الأكسجين "المستقبل النهائي" لتكوين الماء.

معادلة تكوين الماء: $2 \text{H}^+ + \frac{1}{2} \text{O}_2 \text{-----} \text{H}_2\text{O}$

- The transfer of electrons goes as the following:

⇒ **NADH:**

- ∞ Electrons acquired from glucose by NAD⁺ during glycolysis and the citric acid cycle are transferred from NADH to the first molecule of the electron transport chain in complex I.

تنقل الالكترونات المختزلة من الغلوكوز في عملية التحلل السكري وحلقة كربس من جزء NADH إلى أول جزء في سلسلة نقل الالكترون في COMPLEX 1.

- ∞ This molecule is a flavoprotein, so named because it has a prosthetic group called flavin mononucleotide (FMN).

أول جزء في السلسلة يسمى flavoprotein لامتلاكه مجموعة تسمى FMN.

- ∞ The flavoprotein returns to its oxidized form as it passes electrons to an iron-sulfur protein in complex I, one of a family of proteins with both iron and sulfur tightly bound.

بعد استقبال الـ flavoprotein الالكترونات من NADH، يتآكسد جزء الـ flavoprotein وينقل الالكترونات لـ iron-sulfur protein وهو بروتين يحتوي على كبريت وحديد.

- ∞ The iron-sulfur protein then passes the electrons to a compound called ubiquinone (Q).

ثم تنتقل الالكترونات إلى مركب يسمى ubiquinone.

- ∞ This electron carrier is a small hydrophobic molecule, the only member of the electron transport chain that is not a protein. Ubiquinone is individually mobile within the membrane rather than residing in a particular complex.

- ✓ Another name for ubiquinone is coenzyme Q.

وهو جزء كاره للماء، يعد الجزء الغير البروتيني الوحيد المكون للسلسلة. يتحرك هذا الجزء في الغشاء فهو ليس ثابت في مكان وحد. يسمى أيضاً بـ Coenzyme Q.

Most of the remaining electron carriers between ubiquinone and oxygen are proteins called cytochromes.

تتألف مكونات سلسلة نقل الالكترونات المتبقية والمحصورة بين Q و الأكسجين من بروتينات يطلق عليها اسم (السيتوكرومات).

- ∞ Their prosthetic group, called a heme group, has an iron atom that accepts and donates electrons

يحتوي السيتوكروم على مجموعة هيم والتي تحتوي على ذرة حديد قادرة على استقبال وفقد الالكترونات.

- ∞ The electron transport chain has several types of cytochromes, each named “cyt” with a letter and number to distinguish it as a different protein with a slightly different electron-carrying heme group.

تحتوي سلسلة نقل الالكترون على العديد من السيتوكرومات ، تسمى كل منها بوضع كلمة Cyt ثم حرف ثم رقم لتمييزها عن بعضها اذ يتكون كل منها من مجموعة هيم مختلفة قليلاً عن الأخرى.

- ∞ The last cytochrome of the chain, Cyt a3, passes its electrons to oxygen, which is very electronegative. Each oxygen atom also picks up a pair of hydrogen ions (protons) from the aqueous solution, neutralizing the -2 charge of the added electrons and forming water.

آخر ناقل للالكترونات يسمى Cyt a3 يعمل على تمرير الالكترونات الى الاكسجين الذي له كهروسلبية عالية جداً.

➲ FADH₂:

- ∞ FADH₂ adds its electrons from within complex II, at a lower energy level than NADH does.

يضيف ال FADH₂ الالكتروناته الى المركب الثاني في السلسلة والذي له طاقة أقل من المركب الأول الذي ينقل اليه NADH الالكترونات.

- Although NADH and FADH₂ each donate an equivalent number of electrons (2) for oxygen reduction, the electron transport chain provides about one-third less energy for ATP synthesis when the electron donor is FADH₂ rather than NADH.

بالرغم من أن كل من NADH and FADH₂ يمنحان نفس العدد من الالكترونات لاختزال الأكسجين لكن كمية الطاقة التي تنتج من FADH₂ أقل بحوالي الثلث من كمية الطاقة الناتجة من NADH .

→The electron transport chain makes no ATP directly.

لا تستطيع سلسلة نقل الالكترونات انتاج جزيئات ATP مباشرةً.

• Chemiosmosis: The Energy-Coupling Mechanism

- Populating the inner membrane of the mitochondrion or the prokaryotic plasma membrane are many copies of a protein complex called ATP synthase, the enzyme that makes ATP from ADP and inorganic phosphate.

يتوزع في الغشاء الداخلي للميتوكندريا في حقيقيات النوى والغشاء البلازمي في بدائيات النوى عدة نسخ من مركب بروتيني يطلق عليه اسم ATP Synthase وهو إنزيم مسؤول عن تصنیع ATP من خلال اضافة مجموعة فوسفات غير عضوية الى ADP.

- ATP synthase works like an ion pump running in reverse. Ion pumps usually use ATP as an energy source to transport ions against their gradient.

عمل هذا الإنزيم معاكس لعمل مضخات الأيونات. تستخدم مضخات الأيونات جزيئات الـ ATP لضخ الأيونات بعكس اتجاه فرق التركيز (من الأقل التركيز إلى الأعلى).

- Rather than hydrolyzing ATP to pump protons against their concentration gradient, under the conditions of cellular respiration ATP synthase uses the energy of an existing ion gradient to power ATP synthesis.

تقوم المضخات بتحليل الـ ATP لضخ الأيونات بعكس اتجاه فرق التركيز، ولكن هذا الإنزيم تحت ظروف عملية التنفس الخلوي، يقوم بإستخدام الطاقة المخزنة على شكل فرق في تركيز الأيونات للقيام بعملية بناء الـ ATP.

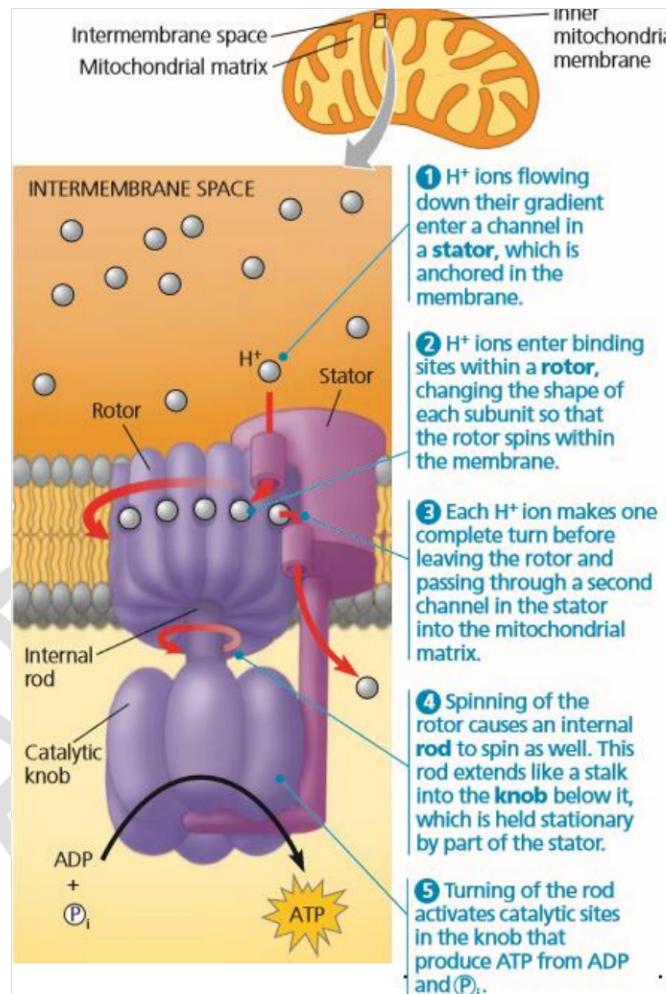
- The power source for ATP synthase is a difference in the concentration of H⁺ on opposite sides of the inner mitochondrial membrane.

يحصل هذا الإنزيم على الطاقة من فرق تركيز أيونات الهيدروجين على جانبي الغشاء الداخلي للميتوكندريا.

- Chemiosmosis: the process, in which energy stored in the form of a hydrogen ion gradient across a membrane is used to drive cellular work such as the synthesis of ATP.

الأسموزية الكيميائية: العملية التي يتم فيها استخدام الطاقة المخزنة على شكل فرق في تركيز الأيونات عبر غشاء لأداء وظائف خلوية معينة مثل تصنیع جزيئات ATP.

- The following figure shows how chemiosmosis works and the structure of ATP Synthase:


1. تدخل ايونات الهيدروجين المنتقلة باتجاه فرق التركيز من خلال قناة تسمى stator والتي توجد في الغشاء الداخلي للميتوكوندريا.

2. تدخل ايونات الهيدروجين موضع ارتباط خاصة بها توجد على ال rotator مسبباً تغير في شكل وحداته مما يؤدي الى دورانه في الغشاء.

3. يكمل كل ايون لفة واحدة ثم يغادر ال rotator ليدخل في قناة ثانية من خلال ال stator الى حشوة الميتوكوندريا.

4. يؤدي دوران ال rotator الى دوران ال rod.

5. يؤدي دوران ال rod الى تفعيل الموضع المحفز في ال knob والتي تقوم بإنتاج ال ATP من ADP و مجموعة فوسفات.

- ATP synthase is a multi-subunit complex with four main parts, each made up of multiple polypeptides

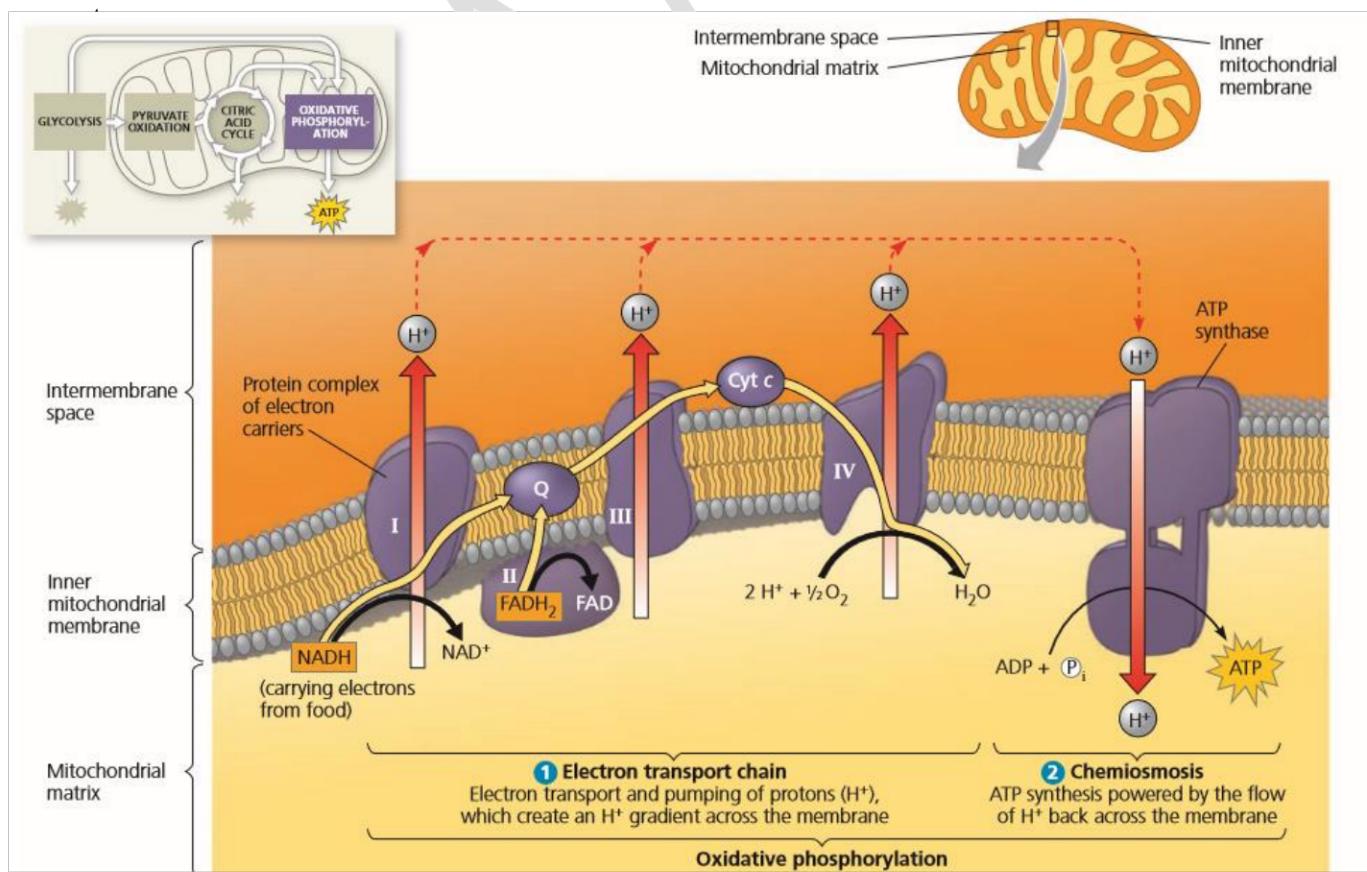
تركيب الإنزيم : مكون من عدة وحدات ذو 4 أجزاء رئيسية ، كل منها مكونة من عدة سلاسل عديد ببتيد.

- Protons move one by one into binding sites on one of the parts (the rotor), causing it to spin in a way that catalyzes ATP production from ADP and inorganic phosphate.

ينتقل البروتون من موقع ارتباط إلى آخر ضمن هذه الأجزاء ، مما يؤدي إلى دوران الإنزيم بطريقة تسمح بإنتاج جزيئات ATP من خلال إضافة مجموعة فوسفات غير عضوية إلى جزيء ADP.

- How is the H^+ gradient generated?
- ✓ By the electron transport chain.

- The chain is an energy converter that uses the exergonic flow of electrons from NADH and FADH₂ to pump H⁺ across the membrane, from the mitochondrial matrix into the intermembrane space.


تعتبر سلسلة نقل الالكترونات كمحول للطاقة حيث تستخدم تدفق الالكترونات المنتج للطاقة على ضخ البروتونات عبر الغشاء من حشوة الميتوكندريا إلى الفراغ الفاصل بين الغشائين.

- The H⁺ has a tendency to move back across the membrane, diffusing down its gradient (from the intermembrane space to the mitochondrial matrix).

بعد ذلك ، تنتشر أيونات الهيدروجين من منطقة التركيز المرتفع إلى منطقة التركيز المنخفض (من الغشاء الفاصل بين الغشائين إلى حشوة الميتوكندريا).

- The ATP synthases are the only sites that provide a route through the membrane for H⁺. As we described previously, the passage of H⁺ through ATP synthase uses the exergonic flow of H⁺ to drive the phosphorylation of ADP. Thus, the energy stored in an H⁺ gradient across a membrane couples the redox reactions of the electron transport chain to ATP synthesis.

يمثل هذا الانزيم الممر الوحيد لهذه الايونات لتنقل الى حشوة الميتوكندريا. مرور هذه الايونات عبر الانزيم يحفز عملية فسفرة ال ADP لانتاج ATP.

- Proton-motive force: The H⁺ gradient across the inner mitochondrial membrane.

يسمى الفرق في تركيز أيونات الهيدروجين بين حشوة الميتوكندريا والفراغ الفاصل بين الغشائين بـ .protein-motive force

- Chemiosmosis is an energy-coupling mechanism that uses energy stored in the form of an H⁺ gradient across a membrane to drive cellular work.

تقوم الأسموزية الكيميائية باستخدام الطاقة المخزنة على شكل فرق تركيز أيونات الهيدروجين عبر غشاء للقيام بعمل الخلية.

- Chloroplasts use chemiosmosis to generate ATP during photosynthesis; in these organelles, light (rather than chemical energy) drives both electron flow down an electron transport chain and the resulting H⁺ gradient formation.

بالإضافة إلى حدوث الأسموزية الكيميائية في الميتوكندريا، تستخدم البلاستيدات الخضراء الأسموزية الكيميائية لتوليد جزيئات ATP حيث يكون مصدر الطاقة الحركة الإلكترونية والبروتونات هي الطاقة الضوئية بدلاً من الطاقة الكيميائية.

- Prokaryotes generate H⁺ gradients across their plasma membranes. They then tap the proton-motive force not only to make ATP inside the cell but also to rotate their flagella and to pump nutrients and waste products across the membrane.

تستطيع الخلايا البدائية توليد فرق في تركيز البروتونات عبر غشاءها البلازمي ، وبالتالي تستخدم هذا الفرق ليس فقط لإنتاج جزيئات ثلاثي فوسفات الأدينوسين ، بل لتحريك الأسواط وضخ المغذيات والفضلات عبر الغشاء.

- Peter Mitchell was awarded the Nobel Prize in 1978 for originally proposing the chemiosmotic model.

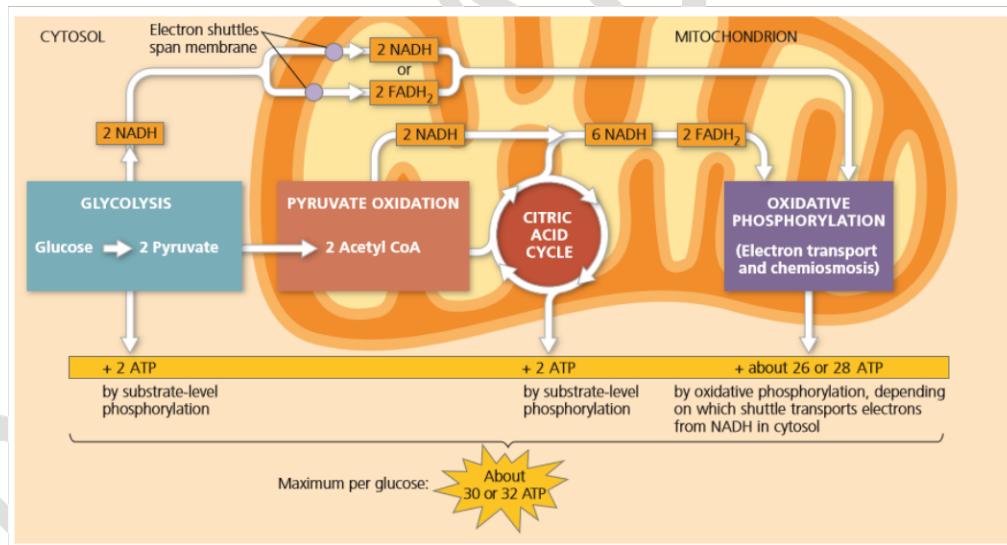
حصل العالم Peter Mitchell على جائزة نوبل عام ١٩٧٨ لاكتشافه نموذج الأسموزية الكيميائية.

• An Accounting of ATP Production by Cellular Respiration

- During cellular respiration, energy flows in the following sequence:

Glucose \rightarrow NADH \rightarrow electron transport chain \rightarrow proton-motive force \rightarrow ATP.

- Let's calculate the total number of ATP produced:


لحساب عدد جزيئات ATP الناتجة من عملية التنفس الخلوي:

- ✓ 4 ATP are produced directly by substrate-level phosphorylation during glycolysis and the citric acid cycle

تنتج 4 جزيئات ATP بشكل مباشر بواسطة أثناء مرحلتي التحلل السكري وحلقة كربس.

- ✓ Each NADH that transfers a pair of electrons from glucose to the electron transport chain contributes enough to the proton-motive force to generate a maximum of about 3 ATP.

يساهم كل جزيء NADH بكمية من الطاقة كافية لانتاج على الأكثر 3 جزيئات ATP.

- Notice that the total number of ATP produced is inexact (either 30 or 32). Why?

لاحظ أن عدد جزيئات ATP الكلي غير محدد.

- 1) Phosphorylation and the redox reactions are not directly coupled to each other, so the ratio of the number of NADH molecules to the number of ATP molecules is not a whole number.

أولاً : لا يتم دمج عملية الفسفرة وتفاعلات التأكسد والاختزال بعضهما مباشرة ، وبالتالي تكون نسبة جزيئات NADH إلى ATP ليست عدداً كاملاً.

- ∞ 1 NADH results in 10 H⁺ being transported out across the inner mitochondrial membrane. The number of H⁺ that must reenter the mitochondrial matrix via ATP synthase to synthesize 1 ATP is 4.

يتم ضخ 10 بروتونات عبر غشاء الميتوكندريا ، حيث إن عدد البروتونات التي يجب أن تعبر عبر إنزيم NADH لتكوين جزيء واحد من ثلاثي فوسفات الأدينوسين = 4 بروتونات.

- ∞ Single molecule of NADH generates enough proton-motive force for the synthesis of 2.5 ATP.

يُنتج عن كل جزيء NADH 2.5 ATP

- ∞ Single molecule of FADH₂ generates enough proton motive force for the synthesis of 1.5 ATP.

يُنتج عن كل جزيء FADH₂ 1.5 ATP

2) The ATP yield varies slightly depending on the type of shuttle used to transport electrons from the cytosol into the mitochondrion; the 2 electrons of NADH captured in glycolysis must be conveyed into the mitochondrion by one of several electron shuttle systems.

تختلف كمية جزيئات ثلاثي فوسفات الأدينوسين حسب نوع النقل المستخدم لنقل الإلكترونات من السايتوكندرول إلى الميتوكندرول ، حيث أنه يجب نقل الإلكترونات التي تحملها جزيئات NADH الناتجة من مرحلة التحلل السكري بأحد آليات النقل داخل الخلية.

- ✓ If the electrons are passed to FAD, as in brain cells, only about 1.5 ATP can result from each NADH that was originally generated in the cytosol.

حيث إن إذا مرت الإلكترونات من السايتوكندرول إلى داخل الميتوكندرول بوساطة FAD ، يُنتج 1.5 ATP كما يحدث في خلايا الدماغ.

- ✓ If the electrons are passed to mitochondrial NAD⁺, as in liver cells and heart cells, the yield is about 2.5 ATP per NADH.

و إذا مرت الإلكترونات من السايتوكندرول إلى داخل الميتوكندرول بوساطة NAD⁺ ، يُنتج 2.5 ATP كما يحدث في خلايا الكبد.

3) The use of the proton-motive force generated by the redox reactions of respiration to drive other kinds of work

استخدام الطاقة المتولدة على شكل فرق في تكثيف البروتونات الناتجة عن تفاعلات التأكسد والاحتزال للقيام بوظائف خلوية أخرى.

- ∞ For example, the proton-motive force powers the mitochondrion's uptake of pyruvate from the cytosol.

مثال ذلك : يستخدم تدرج أيونات الهيدروجين لإدخال البيروفيت من الميتوكندريا إلى السيتوسول .

- If all the proton-motive force generated by the electron transport chain were used to drive ATP synthesis, one glucose molecule could generate a maximum of 28 ATP produced by oxidative phosphorylation plus 4 ATP from substrate-level phosphorylation to give a total yield of about 32 ATP (or only about 30 ATP if the less efficient shuttle were functioning).

إذا استخدمت كل الطاقة المتولدة على شكل فرق تركيز البروتونات لتكوين جزيئات ATP سينتج عن كل جزيء غلوكوز 28 ATP بعملية الفسفرة التأكسدية بالإضافة إلى 4 جزيئات ال ATP الناتجة مباشرة من عملية substrate-level phosphorylation، أي الناتج الكلي 32 جزيء ATP. إذا استخدم FAD لنقل الإلكترونات من السيتوسول إلى الميتوكندريا، سيكون الناتج 30 جزيء ATP.

- The complete oxidation of a mole of glucose releases 686 kcal of energy under standard conditions ($G = -686 \text{ kcal/mol}$).

ينتج من عملية أكسدة مول واحد من الغلوكوز كمية من الطاقة مقدارها 686 كيلوكلالوري.

- Phosphorylation of ADP to form ATP stores at least 7.3 kcal per mole of ATP.

عملية فسفرة جزيئات ال ADP لتكوين مول واحد من ATP تطلب كمية من الطاقة مقدارها 7.3 كيلوكلالوري.

- To calculate the total amount of energy consumed to produce 32 ATP → $7.3 \times 32 = 233.6 \text{ Kcal}$.
- Divide this number by the total amount of energy produced → $233.6 / 686 = .34$
- About 34% of the potential chemical energy in glucose has been transferred to ATP.

أي أن 34% من طاقة الوضع الكيميائية المخزنة في الغلوكوز ستنتقل إلى جزيئات ال ATP .

- The rest of the energy stored in glucose is lost as heat.

تضييع 66% من الطاقة المخزنة في الغلوكوز على شكل حرارة.

- One type of tissue, called brown fat, is made up of cells packed full of mitochondria.

يتكون أحد أنواع الأنسجة التي يطلق عليها Brown fat من خلايا مليئة بالميتوكندريا.

- ✓ The inner mitochondrial membrane contains a channel protein called the uncoupling protein that allows protons to flow back down their concentration gradient without generating ATP.

يحتوي الغشاء الداخلي للميتوكندريا في هذه الخلايا على قنوات بروتينية، التي تسمح بانتشار البروتونات مجدداً من الفراغ الفاصل بين الغشائين إلى حشوة الميتوكندريا دون إنتاج جزيئات ATP.

- ✓ Activation of these proteins in hibernating mammals results in ongoing oxidation of stored fuel (fats), generating heat without any ATP production.

يؤدي تشيط هذه البروتينات في الثدييات القادر على السبات إلى حدوث أكسدة مستمرة للوقود (الدهون المخزنة) ، مما يؤدي إلى توليد الحرارة دون إنتاج أي ATP .

- ✓ In the absence of such an adaptation, the buildup of ATP would eventually cause cellular respiration to be shut down by regulatory mechanism.

غياب مثل هذا التكيف ، سيؤدي إلى تراكم جزيئات ATP وبالتالي إيقاف التنفس الخلوي بواسطة الآليات المنظمة في الخلية.

➤ **Concept 10.5: Fermentation and anaerobic respiration enable cells to produce ATP without the use of oxygen**

- There are two general mechanisms by which certain cells can oxidize organic fuel and generate ATP without the use of oxygen:

هناك آلية تستدعي الأكسدة لذوبان المركبات العضوية و إنتاج جزيئات ال ATP دون استخدام الأكسجين:

(1) Anaerobic respiration

(2) Fermentation

- The distinction between these two is that an electron transport chain is used in anaerobic respiration but not in fermentation.

إن الاختلاف الأساسي بينهما أن عملية التنفس اللاهوائي تتضمن وجود سلسلة نقل الالكترون ضمنها بين عملية التحمر لا تتضمن ذلك.

- The electron transport chain is also called the respiratory chain because of its role in both types of cellular respiration.

تسمى سلسلة نقل الالكترونات أيضاً بالسلسلة التنفسية وذلك لأنها تدخل في كل من التنفس الهوائي واللاهوائي.

- **Anaerobic respiration:**

- ∞ Organisms have an electron transport chain but do not use oxygen as a final electron acceptor at the end of the chain.

تستخدم الكائنات الحية سلسلة نقل الالكترونات لكنها لا تمتلك الأكسجين كمستقبل للالكترونات في نهاية هذه السلسلة.

- ∞ Oxygen performs this function very well because it is extremely electronegative, but other, less electronegative substances can also serve as final electron acceptors. Some “sulfate-reducing” marine bacteria, for instance, use the sulfate ion (SO_4^{2-}) at the end of their respiratory chain.

يستطيع الأكسجين تأدية وظيفته كمستقبل نهائي للالكترونات بسبب كهرولسلبيته العالية لكن في التنفس اللاهوائي يتم استخدام مواد أخرى ذات كهرولسلبية أقل مثل (SO_4^{2-}) التي تستخدمها بعض البكتيريا البحرية.

- ∞ It produces ATP, but H_2S (hydrogen sulfide) is made as a by-product rather than water.

تستطيع هذه البكتيريا إنتاج جزيئات ATP لكنها تكون H_2S بدلاً من الماء.

- **Fermentation:**

- ∞ Fermentation is a way of harvesting chemical energy without using either oxygen or any electron transport chain.

التخمر : طريقة لإنتاج الطاقة الكيميائية بدون استخدام الأكسجين أو سلسلة نقل الالكترونات.

- ∞ Fermentation is an extension of glycolysis that allows continuous generation of ATP by the substrate-level phosphorylation of glycolysis.

تعتبر عملية التخمر امتداد لعملية التحلل السكري التي تسمح بالانتاج المستمر لجزيئات الـ ATP عن طريقة Substrate-level phosphorylation

- ➲ For this to occur there must be a sufficient supply of NAD^+ to accept electrons during the oxidation step of glycolysis. Without some mechanism to recycle NAD^+ from NADH , glycolysis would soon deplete the cell's pool of NAD^+ by reducing it all to NADH and would shut itself down for lack of an oxidizing agent.

حتى يحدث ذلك ، يجب أن يكون هناك تزويذ كافي من جزيئات NAD^+ لاستقبال الالكترونات الناتجة من الأكسدة أثناء التحلل السكري ، وبالتالي دون وجود آليات لإعادة إنتاج NAD^+ من NADH فإن عملية التحلل السكري ستستهلك جميع مخازن الخلية لجزيئات NAD^+ عن طريق تحويلها إلى NADH وبالتالي ستتوقف عملية التحلل السكري عن الحدوث لعدم وجود عامل مؤكسد.

- ✓ Under aerobic conditions, NAD^+ is recycled from NADH by the transfer of electrons to the electron transport chain.

تحت الظروف الهوائية يعاد إنتاج جزيئات NAD^+ من خلال نقل الالكترونات من NADH إلى سلسلة نقل الالكترونات.

- ✓ An anaerobic alternative is to transfer electrons from NADH to pyruvate, the end product of glycolysis.

بينما تحت الظروف اللاهوائية يعاد إنتاج NAD^+ من خلال نقل الالكترونات من NADH إلى البيروفيت وهو الناتج النهائي لمرحلة التحلل السكري.

- **Types of Fermentation**

- Fermentation includes glycolysis plus reactions that regenerate NAD^+ by transferring electrons from NADH to pyruvate or derivatives of pyruvate.

يتضمن التخمر التحلل السكري بالإضافة إلى تفاعلات أخرى تعمل على إنتاج جزيئات NAD^+ من خلال نقل الالكترونات من NADH إلى البيروفيت ومشتقاته.

- The NAD^+ can then be reused to oxidize sugar by glycolysis, which nets two molecules of ATP by substrate-level phosphorylation.

بعد ذلك يعاد استخدام جزيئات NAD^+ لأكسدة السكر من خلال مرحلة التحلل السكري التي تنتج جزيئين من ATP بواسطة عملية **substrate-level phosphorylation**.

- Two types of fermentation:

(1) Alcohol fermentation.

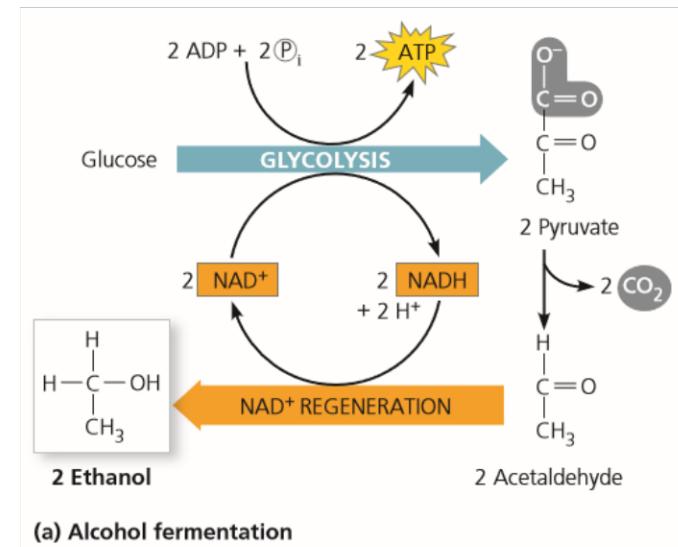
(2) Lactic acid fermentation.

- **Alcohol fermentation:**

- 1) Pyruvate is converted to acetaldehyde by releasing CO_2 .

يتحول البيروفيت إلى مركب الأسيت الدهابي من خلال فقدانه لجزيء ثانوي أكسيد الكربون.

- 2) Acetaldehyde is reduced by NADH to ethanol.


يُختزل الأسيت الدهابي إلى إيثanol بواسطة NADH .

- ✓ This regenerates the supply of NAD⁺ needed for the continuation of glycolysis.
- ✓ Many bacteria carry out alcohol fermentation under anaerobic conditions.
- ✓ Human use yeast in brewing, winemaking, and baking.

استخدم الإنسان الخميرة التي تقوم بهذا النوع من التخمر في تخمير البيرة ، وللخبز.

- ✓ The CO₂ bubbles generated by baker's yeast during alcohol fermentation allow bread to rise.

فقاعات غاز ثاني أكسيد الكربون التي تنتجه الخميرة بواسطة التخمر الكحولي هي التي تسمح بارتفاع الخبز أثناء الخبز.

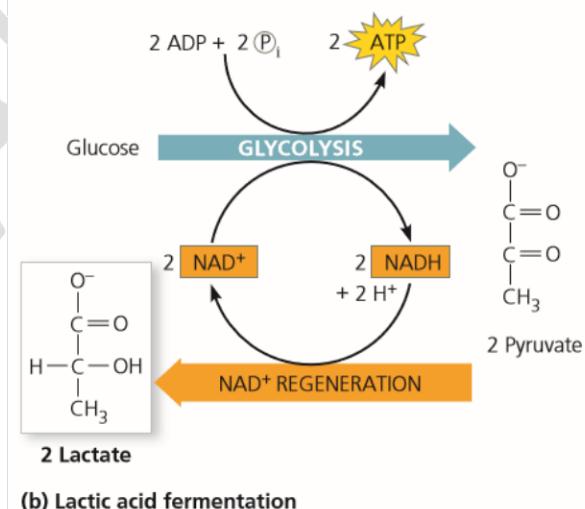
▪ Lactic acid fermentation:

- ✓ Pyruvate is reduced directly by NADH to form lactate as an end product.

يختزل البيروفيت مباشرة إلى لاكتات بواسطة جزيئات NADH.

- ✓ No release of CO₂.

لا يتم إنتاج ثاني أكسيد الكربون.


- ✓ Lactate is the ionized form of lactic acid.

اللاكتيت هو الشكل المتأين لحمض اللاكتيك.

- ✓ Lactic acid fermentation by certain fungi and bacteria is used in the dairy industry to make cheese and yogurt.

يستخدم هذا النوع من التخمر الذي تقوم به أنواع معينة من الفطريات والبكتيريا في الصناعات اليومية لإنتاج الأجبان والألبان.

- ∞ Human muscle cells make ATP by lactic acid fermentation when oxygen is scarce. This occurs during strenuous exercise, when sugar catabolism for ATP production outpaces the muscle's supply of oxygen from the blood.

تستطيع الخلايا العضلية في جسم الإنسان إنتاج جزيئات ATP بواسطة تحرير حمض اللاكتيت عندما يقل مستوى الأكسجين، مثل ذلك: عند ممارسة التمارين المجهدة يفوق مستوى إنتاج جزيئات ATP مستوى الأكسجين الواصل للخلية من الدم.

Under these conditions, the cells switch from aerobic respiration to fermentation. The lactate that accumulates was previously thought to cause the muscle fatigue and pain that occurs a day or so after intense exercise.

تحت هذه الظروف ، تحول الخلايا من عمليات التنفس الهوائي إلى التحرير ، حيث انه كان يعتقد سابقاً أن اللاكتيت الناتج من هذه العملية هو الذي يسبب اجهاد العضلات والألم بعد التمارين المجهدة.

Evidence shows that within an hour, blood carries the excess lactate from the muscles to the liver, where it is converted back to pyruvate by liver cells. Because oxygen is available, this pyruvate can then enter the mitochondria in liver cells and complete cellular respiration.

إلا أن الأدلة تشير إلى أنه خلال ساعة ، يحمل الدم اللاكتيت الناتج بواسطة هذه العملية إلى الكبد حيث يتحول هناك إلى بيروفيت مرة أخرى ، وبما أن الأكسجين متوافر سيدخل هذا البيروفيت إلى الميتوكوندريا في خلايا الكبد لإكمال عملية التنفس الخلوي.

• Comparing Fermentation with Anaerobic and Aerobic Respiration

- Fermentation, anaerobic respiration, and aerobic respiration are three alternative cellular pathways for producing ATP by harvesting the chemical energy of food.

تعتبر كل من عملية التحرير ، التنفس الهوائي ، التنفس اللاهوائي عمليات بديلة لبعضها ، لإنتاج جزيئات ATP من خلال استخراج الطاقة الكيميائية من جزيئات الطعام.

Similarities:

أوجه التشابه:

- All three use glycolysis to oxidize glucose and other organic fuels to pyruvate, with a net production of 2 ATP by substrate - level phosphorylation.

تستخدم هذه العمليات الثلاث التحلل السكري لأكسدة الغلوكوز والمركبات العضوية الأخرى إلى بيروفيت .
 .substrate-level phosphorylation عن طريق ATP ينتج عنها جزيئين

- In all three pathways, NAD⁺ is the oxidizing agent that accepts electrons from food during glycolysis.

في هذه العمليات الثلاث يكون جزيء NAD^+ هو العامل المؤكسد حيث يستقبل الإلكترونات من جزيئات الطعام أثناء التحلل السكري.

⇒ Differences:

أوجه الاختلاف:

1. The contrasting mechanisms for oxidizing NADH back to NAD^+ , which is required to sustain glycolysis.

الفرق الأساسي بين هذه العمليات هي الطريقة التي تستخدمها كل منها لأكسدة جزيئات NADH مجدداً إلى NAD^+ لاستمرار عملية التحلل السكري.

- In fermentation, the final electron acceptor is an organic molecule such as pyruvate (lactic acid fermentation) or acetaldehyde (alcohol fermentation).

في التخمر يعاد إنتاج NAD^+ من خلال نقل الإلكترونات التي تحملها جزيئات NADH إلى البيروفيت (في تخمر حمض اللاكتيك) أو إلى مركب الأسيتيل الدهايد (في التخمر الكحولي).

- In cellular respiration, by contrast, electrons carried by NADH are transferred to an electron transport chain, which regenerates the NAD^+ required for glycolysis.

بينما في التنفس الخلوي (سواء كان هوائي أم لا هوائي) : يعاد إنتاج NAD^+ من خلال نقل الإلكترونات التي تحملها NADH إلى سلسلة نقل الإلكترون.

2. Another major difference is the amount of ATP produced.

من الفروقات الأخرى بين العمليات الثلاث هي كمية ال ATP الناتجة منها.

- Fermentation yields 2 ATP.
- Cellular respiration yields 32 ATP up to 16 times as much as does fermentation.

→ In aerobic respiration, the final electron acceptor is oxygen.

في عملية التنفس الهوائي يكون المستقبل النهائي للإلكترونات الأكسجين.

→ In anaerobic respiration, the final acceptor is another molecule that is electronegative, although less so than oxygen.

في عملية التنفس اللاهوائي، يكون المستقبل النهائي جزء آخر له كهروسلبية عالية ولكن أقل من الأكسجين.

- **Obligate anaerobes:**

- ✓ Organisms that carry out only fermentation or anaerobic respiration.

الكائنات اللاهوائية الاجبارية: كائنات حية تستطيع فقط القيام بعملية التخمر أو عملية التنفس اللاهوئي.

- ✓ These organisms cannot survive in the presence of oxygen, some forms of which can actually be toxic if protective systems are not present in the cell.

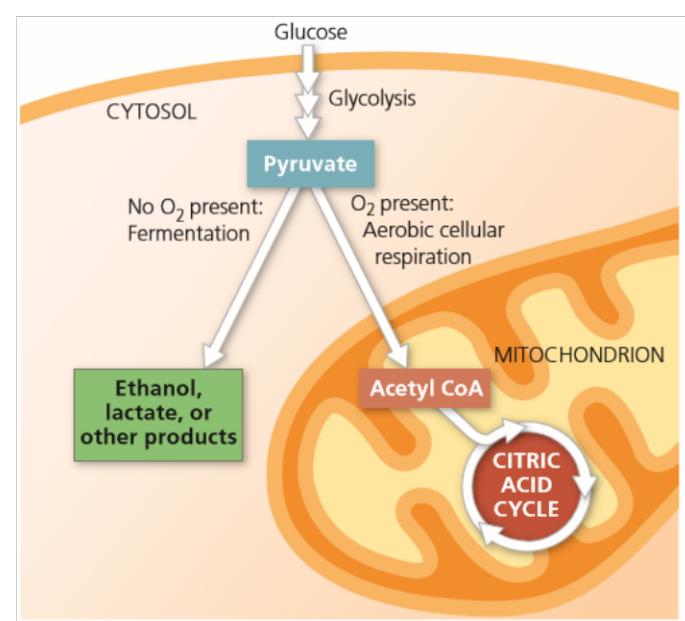
لا تستطيع هذه الكائنات العيش بوجود الأكسجين ، حيث أن بعض الأنواع منها قد تصبح سامة إذا لم يكن هناك نظام حماية لها من الأكسجين.

- ⌚ A few cell types, such as cells of the vertebrate brain, can carry out only aerobic oxidation of pyruvate, not fermentation.

بعض أنواع من الخلايا مثل خلايا الدماغ في الفقاريات ، تستطيع القيام فقط بالأكسدة الهوائية للبيروفيت ولا تستطيع القيام بالتخمر.

- **Facultative anaerobes:**

- ✓ Organisms that can make enough ATP to survive using either fermentation or respiration.


الكائنات اللاهوائية الاختيارية: تستطيع إنتاج كميات كافية من ال ATP من خلال التخمر أو التنفس.

- ✓ Include yeast and bacteria.
- ✓ On the cellular level, our muscle cells behave as facultative anaerobes. In such cells, pyruvate is a fork in the metabolic road that leads to two alternative catabolic routes:

تتصرف الخلايا العضلية في الإنسان مثل هذه الكائنات بحيث يسلك البيروفيت طريقين مختلفين في الخلايا حسب الظروف المتواجدة فيها:

- ⌚ Under aerobic conditions, pyruvate can be converted to acetyl CoA, and oxidation continues in the citric acid cycle via aerobic respiration.

في حال توافر كمية كافية من الأكسجين، يدخل البيروفيت عملية التنفس الهوائي بحيث يتحول إلى acetyl coA وتستمر عملية الأكسدة بحلقة كربس.

- Under anaerobic conditions, lactic acid fermentation occurs: Pyruvate is diverted from the citric acid cycle, serving instead as an electron acceptor to recycle NAD⁺.

تحت الظروف اللاهوائية، لا يدخل البيروفيت لحلقة الكربس بل يتخرّم لانتاج حمض اللاكتيك بحيث يعمل البيروفيت على استقبال الالكترونات من NADH لا عادة تجديد العامل المؤكسد NAD⁺.

- To make the same amount of ATP, a facultative anaerobe has to consume sugar at a much faster rate when fermenting than when respiring.

يجب على هذه الكائنات استهلاك السكر بمعدل أكبر في عملية التخمر لانتاج كمية من الطاقة بعملية التخمر مساوية لكمية الطاقة المنتجة من عملية التنفس الهوائية.

- Glycolysis is the most widespread metabolic pathway.

تعتبر عملية التحلل السكري من أكثر عمليات الأيض انتشارا في الخلايا.

- The cytosolic location of glycolysis also implies great antiquity; the pathway does not require any of the membrane-enclosed organelles.

تحدث عملية التحلل السكري في السيتوبلازم اذ لا تتطلب عمل أي من العضويات المحاطة بأغشية.

➤ *Concept 10.6: Glycolysis and the citric acid cycle connect to many other metabolic pathways*

- Free glucose molecules are not common in the diets of humans and other animals. We obtain most of our calories in the form of fats, proteins, and carbohydrates such as sucrose and other disaccharides, and starch, a polysaccharide. All these organic molecules in food can be used by cellular respiration to make ATP.

الغلوکوز الحر غير شائع في غذائنا فنحصل على معظم الطاقة من الطعام على شكل بروتينات ، كربوهيدرات (مثل السكروز كسكر ثانوي و النشا كسكر متعدد) والدهون. اذ نستخدم هذه الجزيئات في النهاية ل القيام بعملية التنفس الخلوي وإنتاج جزيئات ATP .

- Carbohydrates:
 - ✓ Glycolysis can accept a wide range of carbohydrates for catabolism.

تستقبل عملية التحلل السكري مدى واسع من جزيئات الكربوهيدرات لتكسيرها واستخدامها في عملية التنفس.

In the digestive tract:

- Starch is hydrolyzed to glucose, which can then be broken down in the cells by glycolysis and the citric acid cycle.

يتحل النشا إلى غلوكوز حيث يتم تكسيره داخل الخلايا في عمليات التحلل السكري وحلقة كربس.

- Glycogen, the polysaccharide that humans and many other animals store in their liver and muscle cells, can be hydrolyzed to glucose between meals as fuel for respiration.

يستطيع الإنسان تكسير الغلوكوجين المخزن في العضلات والكبد و هضمها إلى مونومرات من الغلوكوز لاستخدامه كوقود في عمليات التنفس.

- The digestion of disaccharides, including sucrose, provides glucose and other monosaccharides as fuel for respiration.

كما أنه يتم هضم السكريات الثنائية مثل السكر ل توفير مونومرات الغلوكوز و سكريات أحادية أخرى لاستخدامها كوقود للتنفس الخلوي.

- Proteins:

- ✓ Proteins can also be used for fuel, but first they must be digested to their constituent amino acids. Many of the amino acids are used by the organism to build new proteins. Amino acids present in excess are converted by enzymes to intermediates of glycolysis and the citric acid cycle.

من الممكن استخدام البروتينات كوقود للخلايا، لكن قبل ذلك : يجب أن تكسر البروتينات إلى أحماض أمينية حيث يتم استخدام العديد من هذه الأحماض لبناء بروتينات أخرى ، في حين أن الأحماض الزائدة يتم تحويلها بواسطة إنزيمات معينة إلى مركبات وسطية لاستخدامها في التحلل السكري وحلقة كربس.

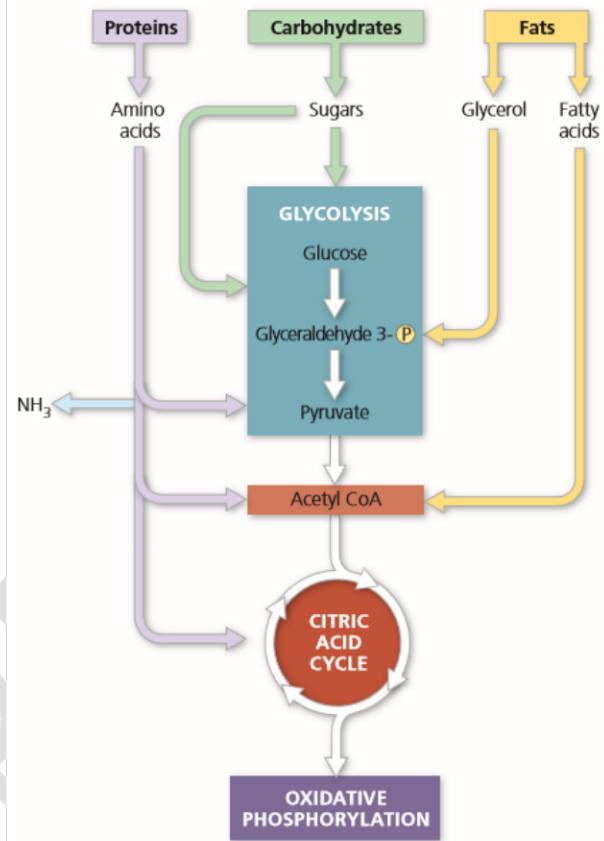
- ✓ Before amino acids can feed into glycolysis or the citric acid cycle, their amino groups must be removed, a process called deamination.

قبل استخدام هذه الأحماض ، يجب أن يفقد الحمض الأميني مجموعة الأمين الخاصة به من خلال عملية **Desamination**.

- ✓ The nitrogenous waste is excreted from the animal in the form of ammonia (NH_3), urea, or other waste products

يتم التخلص من الفضلات النيتروجينية على شكل أمونيا ، بوريا ، ومركبات أخرى.

- Fats:


- ✓ Catabolism can also harvest energy stored in fats obtained either from food or from fat cells in the body.

تستطيع عمليات الهدم أيضا استخلاص الطاقة المخزنة في الدهون التي يكون مصدرها إما الطعام أو الخلايا الدهنية في الجسم.

- ✓ After fats are digested to glycerol and fatty acids, the glycerol is converted to glyceraldehyde 3phosphate, an intermediate of glycolysis.

بعد تحليل جزيء الدهن إلى غليسروول و أحماض دهنية يتم تحويل الغليسروول إلى G3P وهو مركب وسيط يدخل في عملية التحلل السكري.

- ➲ Most of the energy of a fat is stored in the fatty acids.

إن معظم الطاقة المخزنة في الدهون تكون في الأحماض الدهنية.

- ✓ A metabolic sequence called beta oxidation breaks the fatty acids down to two-carbon fragments, which enter the citric acid cycle as acetyl CoA.

هناك مسار أيضا يطلق عليه Beta oxidation الذي يعمل على تكسير الحمض الدهني إلى قطعتين كربونيتين تدخلان إلى حلقة كربس على شكل Acetyl co-A.

- ✓ NADH and FADH₂ are also generated during beta oxidation; they can enter the electron transport chain, leading to further ATP production.

** تستطيع هذه العملية أيضا إنتاج جزيئات NADH and FADH₂ والتي تدخل إلى سلسلة نقل الالكترونات لإنجاح المزيد من جزيئات ATP.

- ✓ Fats make excellent fuels, in large part due to their chemical structure and the high energy level of their electrons (present in many C-H bonds, equally shared between carbon and hydrogen) compared to those of carbohydrates.

تعد الدهون وقوداً جيداً للخلايا وذلك بسبب تركيبها ومحتوها العالي من الطاقة مقارنةً مع الكربوهيدرات.

(هذه الطاقة مخزنة في الرابطة C-H التي تشارك فيها الالكترونات بصورة متساوية).

- ✓ A gram of fat oxidized by respiration produces more than twice as much ATP as a gram of carbohydrate.

تنتج عملية أكسدة غرام واحد من الدهون ضعف كمية الطاقة التي يستطيع غرام واحد من الكربوهيدرات إنتاجها.

- **Biosynthesis (Anabolic Pathways)**

- Not all the organic molecules of food are destined to be oxidized as fuel to make ATP. In addition to calories, food must also provide the carbon skeletons that cells require to make their own molecules.

لا تستخدم المواد العضوية فقط كوقود لصنع جزيئات ATP. بالإضافة إلى تزويدها بالطاقة، يزودنا الطعام أيضاً بالهيكل الكربوني الذي تحتاجها الخلية لتصنيع الجزيئات التي تحتاجها.

- Some organic monomers obtained from digestion can be used directly.

يتم الحصول على بعض المونومرات الخاصة بالمركبات العضوية مباشرةً عن طريق الهضم.

- ✓ The body needs specific molecules that are not present as such in food.
- ✓ Compounds formed as intermediates of glycolysis and the citric acid cycle can be diverted into anabolic pathways as precursors from which the cell can synthesize the molecules it requires.

كما أن الجسم يحتاج أيضاً إلى مركبات معينة لا تتوارد مباشرةً في الطعام، حيث يتم إنتاجها من خلال تحويل مركبات وسطية في كل من عمليتي التحلل السكري و حلقة كربس كمصدر لإنتاج المركبات التي تحتاجها الخلية.

∞ For example:

- 1) Humans can make about half of the 20 amino acids in proteins by modifying compounds siphoned away from the citric acid cycle; the rest are "essential amino acids" that must be obtained in the diet.

يمكن لجسم الإنسان تصنيع فقط نصف أنواع الأحماض الأمينية عن طريق التعديل على مركبات تنتج من حلقة كربس، باقي الأحماض الأمينية أساسية يجب الحصول عليها من الغذاء.

- 2) Glucose can be made from pyruvate, and fatty acids can be synthesized from acetyl CoA.

يمكن تصنيع الغلوكوز من البيروفيت ويمكن تصنيع الأحماض الدهنية من Acetyl CoA.

- ✓ In addition, glycolysis and the citric acid cycle function as metabolic interchanges that enable our cells to convert some kinds of molecules to others as we need them.

بالإضافة إلى ذلك ، يعمل التحلل السكري وحلقة كربس كتبادلات أيضية تمكن خلايانا من تحويل بعض أنواع الجزيئات إلى أخرى حسب حاجتنا إليها.

- ∞ For example, an intermediate compound generated during glycolysis, dihydroxyacetone phosphate can be converted to one of the major precursors of fats.

على سبيل المثال، يمكن تحويل dihydroxyacetone phosphate - وهو أحد المركبات الوسيطة الناتجة خلال عملية التحلل السكري - إلى أحد أهم المركبات التي تسبق الدهون.

- **Regulation of Cellular Respiration via Feedback Mechanisms**

- The cell does not waste energy making more of a particular substance than it needs. If there is a surplus of a certain amino acid, for example, the anabolic pathway that synthesizes that amino acid from an intermediate of the citric acid cycle is switched off.

لا تقوم الخلايا بصرف وإضاعة الطاقة لتصنيع مواد زائدة عن حاجتها ، على سبيل المثال ، لو كان هناك فائض في الخلية من حمض أميني معين فإن الخلية ستقوم بإيقاف مسار البناء الذي يصنع هذا الحمض من مركبات وسيطة في حلقة كربس.

- The most common mechanism for this control is feedback inhibition: The end product of the anabolic pathway inhibits the enzyme that catalyzes an early step of the pathway.

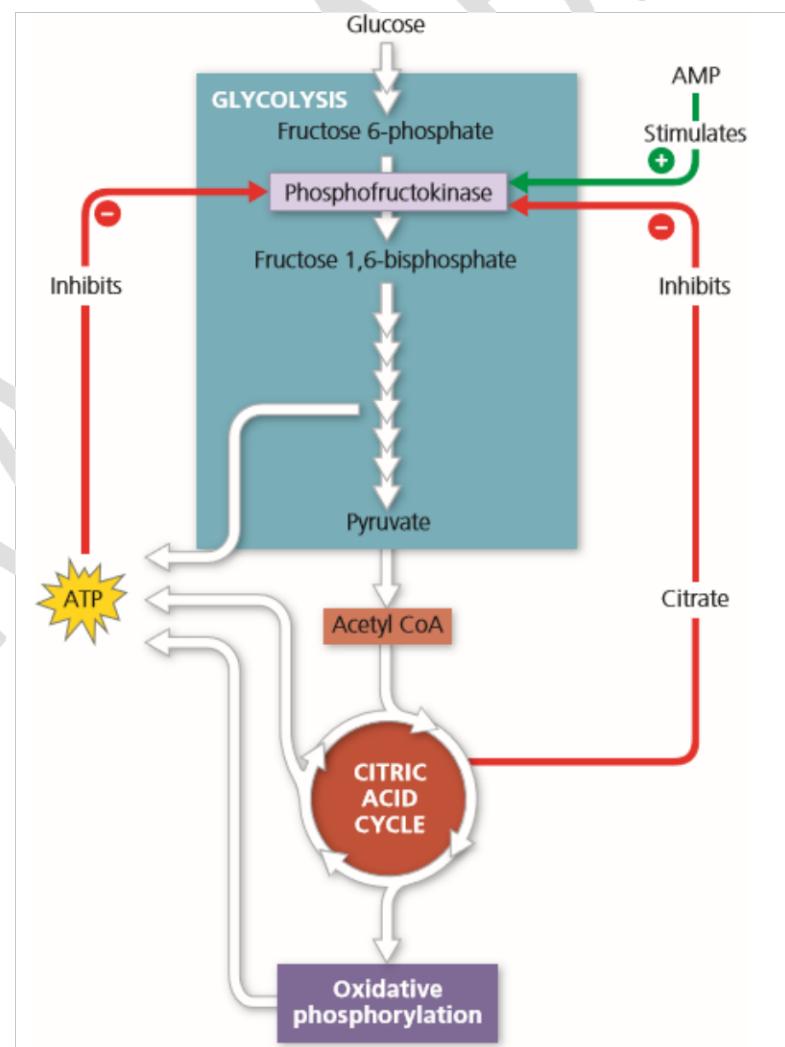
من أهم المسارات التي تسلكها الخلية لتنظيم هذه المسارات : التغذية الراجعة السلبية والذي يعمل فيها الناتج النهائي لمسار البناء على تثبيط الإنزيم الذي يحفز خطوات مبكرة من هذه العملية.

The cell also controls its catabolism. If the cell is working hard and its ATP concentration begins to drop, respiration speeds up. When there is plenty of ATP to meet demand, respiration slows down, sparing valuable organic molecules for other functions.

بالإضافة لتنظيمها لعمليات البناء، تقوم الخلية أيضاً بتنظيم عمليات الهدم فيها. اذا قامت الخلية بجهود كبير وانخفض مستوى ال ATP تقوم الخلية بسرعة عملية التنفس الخلوي. أما في حال توافر كميات كبيرة من ال ATP فإن الخلية تقوم بإبطاء عملية التنفس الخلوي.

- Control is based mainly on regulating the activity of enzymes at strategic points in the catabolic pathway.

يتم تنظيم مسارات البناء والهدم اعتمادا على تنظيم نشاط الانزيمات التي تدخل في هذه العمليات عند مراحل معينة و مهمة.


- As shown in the following figure, one important switch is phosphofructokinase, the enzyme that catalyzes step 3 of glycolysis.

أحد أهم طرق تنظيم عملية التنفس الخلوي التحكم بنشاط إنزيم Phosphofructokinase وهو الإنزيم المسؤول عن الخطوة الثالثة من مرحلة التحلل السكري.

- That is the first step that commits the substrate irreversibly to the glycolytic pathway. By controlling the rate of this step, the cell can speed up or slow down the entire catabolic process.

عن طريق التحكم بهذه الخطوة، يمكن للخلية اسراع أو ابطاء عملية الهدم.

- Phosphofructokinase can thus be considered the pacemaker of respiration.

